如图,在△ABC中,AD平分∠BAC,DE ∥ AC,EF⊥AD交BC延长线于F.求证:∠FAC=∠B
如图,在△ABC中,AD平分∠BAC,DE∥AC,EF⊥AD交BC延长线于F.求证:∠FAC=∠B....
如图,在△ABC中,AD平分∠BAC,DE ∥ AC,EF⊥AD交BC延长线于F.求证:∠FAC=∠B.
展开
展开全部
∵DE ∥ AC,
∴∠EDA=∠CAD,
∴∠EDA=∠EAD,
∴AE=ED,
又∵EF⊥AD,
∴EF是AD的垂直平分线,
∴∠EDA=∠CAD,
∴∠EDA=∠EAD,
∴AE=ED,
又∵EF⊥AD,
∴EF是AD的垂直平分线,
∴AF=DF,
∴∠FAD=∠FDA,
又∵∠FAD=∠CAD+∠FAC,
∠FDA=∠B+∠BAD,
∴∠FAC=∠B.
∴AF=DF,∵DE ∥ AC,
∴∠EDA=∠CAD,
∴∠EDA=∠EAD,
∴AE=ED,
又∵EF⊥AD,
∴EF是AD的垂直平分线,
∴AF=DF,
∴∠FAD=∠FDA,
又∵∠FAD=∠CAD+∠FAC,
∠FDA=∠B+∠BAD,
∴∠FAC=∠B.
∴∠FAD=∠FDA,
又∵∠FAD=∠CAD+∠FAC,
∠FDA=∠B+∠BAD,
∴∠FAC=∠B.
∴∠EDA=∠CAD,
∴∠EDA=∠EAD,
∴AE=ED,
又∵EF⊥AD,
∴EF是AD的垂直平分线,
∴∠EDA=∠CAD,
∴∠EDA=∠EAD,
∴AE=ED,
又∵EF⊥AD,
∴EF是AD的垂直平分线,
∴AF=DF,
∴∠FAD=∠FDA,
又∵∠FAD=∠CAD+∠FAC,
∠FDA=∠B+∠BAD,
∴∠FAC=∠B.
∴AF=DF,∵DE ∥ AC,
∴∠EDA=∠CAD,
∴∠EDA=∠EAD,
∴AE=ED,
又∵EF⊥AD,
∴EF是AD的垂直平分线,
∴AF=DF,
∴∠FAD=∠FDA,
又∵∠FAD=∠CAD+∠FAC,
∠FDA=∠B+∠BAD,
∴∠FAC=∠B.
∴∠FAD=∠FDA,
又∵∠FAD=∠CAD+∠FAC,
∠FDA=∠B+∠BAD,
∴∠FAC=∠B.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询