(2012?白云区一模)如图,正方形ABCD的边长是4,∠DAC的角平分线交DC于点E,点P、Q分别是边AD和AE上的动

(2012?白云区一模)如图,正方形ABCD的边长是4,∠DAC的角平分线交DC于点E,点P、Q分别是边AD和AE上的动点(两动点不重合).(1)PQ+DQ的最小值是__... (2012?白云区一模)如图,正方形ABCD的边长是4,∠DAC的角平分线交DC于点E,点P、Q分别是边AD和AE上的动点(两动点不重合).(1)PQ+DQ的最小值是______.(2)说出PQ+DQ取得最小值时,点P、Q的位置,并在图中画出;(3)请对(2)中你所给的结论进行证明. 展开
 我来答
惰惰牌香烟465
推荐于2016-02-09 · 超过74用户采纳过TA的回答
知道答主
回答量:158
采纳率:33%
帮助的人:69.3万
展开全部
解:(1)过点D作DF⊥AC,垂足为F,则DF即为PQ+DQ的最小值.
∵正方形ABCD的边长是4,
∴AD=4,∠DAC=45°,
在直角△ADF中,∠AFD=90°,∠DAF=45°,AD=4,
∴DF=AD?sin45°=4×
2
2
=2
2

故答案为2
2


(2)如图1,过点D作DF⊥AC,垂足为F,DF与AE的交点即为点Q,过点Q作QP⊥AD,垂足即为点P;

(3)∵AE平分∠DAC,Q为AE上的点,且QF⊥AC于点F,QP⊥AD于点P,
∴QP=QF(角平分线性质定理),
∴PQ+DQ=FQ+DQ=DF=2
2

下面证明此时的PQ+DQ为最小值:
在AE上取异于Q的另一点Q1,如图2.
①过Q1点作Q1F1⊥AC于点F1
过Q1点作Q1P1⊥AD于点P1
则P1Q1+DQ1=F1Q1+DQ1
由垂线段最短,可得F1Q1+DQ1>FQ+DQ,
即P1Q1+DQ1>PQ+DQ;
②若P2是AD上异于P1的任一点,
可知斜线段P2Q1>垂线段P1Q1
∴P2Q1+DQ1>P1Q1+DQ1>PQ+DQ.
从而可得此处PQ+DQ的值最小.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式