如图1,AB是圆O的直径,点C在AB的延长线上,AB=4,BC=2,P是圆O上半部分的一个动点,连接OP,CP.(1)求
如图1,AB是圆O的直径,点C在AB的延长线上,AB=4,BC=2,P是圆O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;设...
如图1,AB是圆O的直径,点C在AB的延长线上,AB=4,BC=2,P是圆O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;设∠OCP=α,当线段CP与圆O只有一个公共点(即P点)时,求α的范围(直接写出答案);(3)如图2,延长PO交圆O于点D,连接DB,当CP=DB,求证:CP是圆O的切线.
展开
2个回答
展开全部
(1)解:∵AB=4,
∴OB=2,OC=OB+BC=4.
在△OPC中,设OC边上的高为h,
∵S△OPC=
OC?h=2h,
∴当h最大时,桐凯明S△OPC取得最大值.
观察图形,当OP⊥OC时,h最大,如答图1所示:
此时h=半径=2,S△OPC=2×2=4.
∴△OPC的最大面积为4.
(2)解:当PC与⊙O相切时,∠OCP最大.如答图2所示:
∵sin∠OCP=
=
=
,
∴∠OCP=30°
∴∠OCP的最大度数为30°.
∴设∠OCP=α,当线段CP与圆O只有一个公共点(即P点)时,0<α≤30°;
(3)证明:图3,连接AP,BP.
∴∠A=∠D=∠APD=∠ABD,
∵
=
,
∴
=
,
∴AP=BD,孙链
∵CP=DB,
∴AP=CP,
∴∠A=∠C
∴∠A=∠D=∠APD=∠ABD=∠C,
在△ODB与△局告BPC中,
,
∴△ODB≌△BPC(SAS),
∴∠D=∠BPC,
∵PD是直径,
∴∠DBP=90°,
∴∠D+∠BPD=90°,
∴∠BPC+∠BPD=90°,
∴DP⊥PC,
∵DP经过圆心,
∴PC是⊙O的切线.
∴OB=2,OC=OB+BC=4.
在△OPC中,设OC边上的高为h,
∵S△OPC=
1 |
2 |
∴当h最大时,桐凯明S△OPC取得最大值.
观察图形,当OP⊥OC时,h最大,如答图1所示:
此时h=半径=2,S△OPC=2×2=4.
∴△OPC的最大面积为4.
(2)解:当PC与⊙O相切时,∠OCP最大.如答图2所示:
∵sin∠OCP=
OP |
OC |
2 |
4 |
1 |
2 |
∴∠OCP=30°
∴∠OCP的最大度数为30°.
∴设∠OCP=α,当线段CP与圆O只有一个公共点(即P点)时,0<α≤30°;
(3)证明:图3,连接AP,BP.
∴∠A=∠D=∠APD=∠ABD,
∵
AD |
PB |
∴
AP |
BD |
∴AP=BD,孙链
∵CP=DB,
∴AP=CP,
∴∠A=∠C
∴∠A=∠D=∠APD=∠ABD=∠C,
在△ODB与△局告BPC中,
|
∴△ODB≌△BPC(SAS),
∴∠D=∠BPC,
∵PD是直径,
∴∠DBP=90°,
∴∠D+∠BPD=90°,
∴∠BPC+∠BPD=90°,
∴DP⊥PC,
∵DP经过圆心,
∴PC是⊙O的切线.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询