一元二次方程的解法? 10
3个回答
展开全部
直接开平方法和配方法。
对于形如a(x?k)^2=b(a≠0,ab≥0)的方程,只要把(x?k)看作一个整体,就可转化为x^2=b/a的形式,然后开平方得x-k=±√(b/a),所以x=k±√(b/a),这种求方程根的方法叫做直接开平方法。
解方程ax^2+bx+c=0(a≠0)。先将常数c移到方程右边:ax^2+bx=-c。将二次项系数化为1:x^2+b/ax=-c/a。方程两边分别加上一次项系数的一半的平方:x^2+b/ax+(b/2a)^2=-c/a+(b/2a)^2;方程左边成为一个完全平方式:(x+b/2a)2=-c/a+(b/2a)2。当b2-4ac≥0时,x+b/2a=+J(-c/a)+(b/2a)2x={-b+[V(b2-4ac)]}/2a。
对于形如a(x?k)^2=b(a≠0,ab≥0)的方程,只要把(x?k)看作一个整体,就可转化为x^2=b/a的形式,然后开平方得x-k=±√(b/a),所以x=k±√(b/a),这种求方程根的方法叫做直接开平方法。
解方程ax^2+bx+c=0(a≠0)。先将常数c移到方程右边:ax^2+bx=-c。将二次项系数化为1:x^2+b/ax=-c/a。方程两边分别加上一次项系数的一半的平方:x^2+b/ax+(b/2a)^2=-c/a+(b/2a)^2;方程左边成为一个完全平方式:(x+b/2a)2=-c/a+(b/2a)2。当b2-4ac≥0时,x+b/2a=+J(-c/a)+(b/2a)2x={-b+[V(b2-4ac)]}/2a。
展开全部
一元二次方程的解法:
1.开平方法
(1)形如 x²=p或(nx+m)²=p(p≥0) 的一元二次方程可采用直接开平方法解一元二次方程 。
(2)注意:
①等号左边是一个数的平方的形式而等号右边是一个常数。
②降次的实质是由一个一元二次方程转化为两个一元一次方程。
③方法是根据平方根的意义开平方。
2.配方法
将一元二次方程配成 (x+m)²=n 的形式,再利用直接开平方法求解的方法。
(1)用配方法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
(2)配方法的理论依据是完全平方公式
(3)配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。
3.求根公式
求根公式:x=-b±√b²-4ac/2a(2a分之负b加减根号下b²减4ac)
4.因式分解法
因式分解法即利用因式分解求出方程的解的方法。
因式分解法解一元二次方程的一般步骤如下:
①移项,使方程的右边化为零;
②将方程的左边转化为两个一元一次多项式的乘积;
③令每个因式分别为零;
④括号中的 x,它们的解就都是原方程的解。
5.图像解法
1.开平方法
(1)形如 x²=p或(nx+m)²=p(p≥0) 的一元二次方程可采用直接开平方法解一元二次方程 。
(2)注意:
①等号左边是一个数的平方的形式而等号右边是一个常数。
②降次的实质是由一个一元二次方程转化为两个一元一次方程。
③方法是根据平方根的意义开平方。
2.配方法
将一元二次方程配成 (x+m)²=n 的形式,再利用直接开平方法求解的方法。
(1)用配方法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
(2)配方法的理论依据是完全平方公式
(3)配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。
3.求根公式
求根公式:x=-b±√b²-4ac/2a(2a分之负b加减根号下b²减4ac)
4.因式分解法
因式分解法即利用因式分解求出方程的解的方法。
因式分解法解一元二次方程的一般步骤如下:
①移项,使方程的右边化为零;
②将方程的左边转化为两个一元一次多项式的乘积;
③令每个因式分别为零;
④括号中的 x,它们的解就都是原方程的解。
5.图像解法
更多追问追答
追问
求根公式我不太懂啊。
详细推导一下可以吗?
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一般形式为:ax2+bx+c=0,(a≠0)有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法1)直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m2)配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b2-4ac≥0时,x+=±∴x=(这就是求根公式)3)公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根4)因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
望采纳。。。
望采纳。。。
更多追问追答
追问
你好
公式法的第2步我看得不太懂。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |