已知椭圆Cx^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1 F2 过F2作直线l与椭圆C交于点M N

(1)若椭圆离心率为1/2右准线方程x=4M为椭圆的上顶点直线l交右准线于点P求1/PM+1/PN的值(2)当a^2+b^2=4时设M为椭圆C上第一象限内的点直线l交y轴... (1)若椭圆离心率为1/2 右准线方程x=4 M为椭圆的上顶点 直线l交右准线于点P 求1/PM+1/PN的值
(2)当a^2+b^2=4时设M为椭圆C上第一象限内的点 直线l交y轴于点Q F1M⊥F1Q 求证:点M在定直线上
展开
 我来答
戒贪随缘
2015-02-15 · TA获得超过1.4万个赞
知道大有可为答主
回答量:3687
采纳率:92%
帮助的人:1371万
展开全部
解:(1) 由已知得 c/a=1/2 且 a^2/c=4 且a^2=b^2+c^2
解得a^2=4,b^2=3,c=1 椭圆方程x^2/4+y^2/3=1
M(0,√3),F2(1,0)
直线MF1方程 √3x+y-√3=0
可分别求得交点P(4,-3√3),N(8/5,(-3√3)/5)
两点间距离公式可得 |PM|=8,|PN|=24/5

所以 1/|PM|+1/|PN|=1/8+5/24=1/3

(2)已知 a^2+b^2=4 则0<b^2<2
设P(m,n) (m>0,n>0,m≠c)
则 m^2/a^2+n^2/b^2=1 (1)

F1(-c,0),F2(c,0)

PF2的方程 nx+(c-m)y-nc=0
它与y轴交点Q(0,nc/(c-m))
由 F1M⊥F1Q 得

(m+c)(0+c)+(n-0)(nc/(c-m)-0)=0
化简得 m^2-n^2=c^2 (2)

由(1)(2)解得
m^2=(a^2b^2+a^2c^2)/(a^2+b^2)=a^2(b^2+c^2)/4=a^4/4
m=a^2/2
n^2=(a^2b^2-c^2b^2)//(a^2+b^2)=b^2(a^2-c^2)/4=b^4/4
n=b^2/2

m+n=a^2/2+b^2/2=(a^2+b^2)/2=4/2=2
即 m+n-2=0

所以P在定直线x+y-2=0上。

较难的题,希望能帮到你!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式