半径为4的球面上有A、B、C、D四点,AB,AC,AD两两互相垂直,则△ABC、△ACD、△ADB面积之和S△ABC+S△AC

半径为4的球面上有A、B、C、D四点,AB,AC,AD两两互相垂直,则△ABC、△ACD、△ADB面积之和S△ABC+S△ACD+S△ADB的最大值为()A.8B.16C... 半径为4的球面上有A、B、C、D四点,AB,AC,AD两两互相垂直,则△ABC、△ACD、△ADB面积之和S△ABC+S△ACD+S△ADB的最大值为(  )A.8B.16C.32D.64 展开
 我来答
八神将0409
推荐于2016-10-11 · TA获得超过190个赞
知道答主
回答量:117
采纳率:0%
帮助的人:102万
展开全部
解析:C.根据题意可知,设AB=a,AC=b,AD=c,则可知AB,AC,AD为球的内接长方体的一个角.故a2+b2+c2=64,而S△ABC+S△ACD+S△ADB
1
2
(ab+ac+bc)
a2+b2+a2+c2+b2+c2
4
a2+b2+c2
2
=32

故选 C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式