求幂级数∑(-1)^nx^n/n!的收敛半径
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
解:设f(z)=1/z^2=z^(-2),则f'(z)=-2z^(-3),f"(z)=3!z^(-4) ,f'''(z)=-4!z^(-5),可以看出f(z)=(-1)^n(n+1)!z^[的n阶导数-(n+ 2)],所以 f(z) 在 z=1 处的泰勒展开 fn(z)=f(1)+∑{(-1)^n(n+1)!1^[-(n +2 )]/n!}(z-1)^n+O((z-1)^n),(其中∑的下限为1,上限为n),化简为fn(z )=1+∑(-1)^n(n+1)(z-1)^n+O((z-1)^n)=1-2(z-1)+3(z-1) ^2-4(z -1)^3+…+(-1)^n(n+1)(z-1)^n+O((z-1)^n)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设an=[(-1)^n]/(n!)。∴ρ=lim(n→∞)丨a(n+1)/an丨=lim(n→∞)1/(n+1)=0。
∴收敛半径R=1/ρ=∞。
【事实上,∑an(x^n)=e^(-x)。∴x∈R,∴收敛半径R为∞】。
∴收敛半径R=1/ρ=∞。
【事实上,∑an(x^n)=e^(-x)。∴x∈R,∴收敛半径R为∞】。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
两筐菜150来斤,老黄挑在肩上,累却开心,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
快乐是幸福的基础,是孕育幸福的沃土,是阳光是雨露,是幸福的摇篮;快乐并不等同于幸福,幸福是快乐的浓缩与升华,幸福是更高精神层面的心理感受,幸福是从快乐金矿中提纯的金。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询