若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式f(x1)+f(x2)2≤f(x1+x22)

若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式f(x1)+f(x2)2≤f(x1+x22)成立,则称函数y=f(x)为区间D上的凸函数... 若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式f(x1)+f(x2)2≤f(x1+x22)成立,则称函数y=f(x)为区间D上的凸函数.(1)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;(2)设f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数f(x)=ax2+x(a∈R,a≠0)能否成为R上的凸函数;(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由. 展开
 我来答
731324129
推荐于2016-05-11 · 超过72用户采纳过TA的回答
知道答主
回答量:116
采纳率:0%
帮助的人:171万
展开全部
(1)证明:对任意x1,x2∈R,当a<0,
有[f(x1)+f(x2)]-2f(
x1+x2
2
)=ax12+bx1+c+ax22+bx2+c-2[a(
x1+x2
2
2+b(
x1+x2
2
)+c]=ax12+ax22-
1
2
a(x12+x22+2x1x2)=
1
2
a(x1-x22             (3分)
∴当a<0时,f(x1)+f(x2)≤2f(
x1+x2
2
),即
f(x1)+f(x2)
2
≤f(
x1+x2
2

当a<0时,函数f(x)是凸函数.                                          (5分)
(2)当x=0时,对于a∈R,有f(x)≤1恒成立;当x∈(0,1]时,要f(x)≤1恒成立,即ax2≤-x+1,
∴a≤
1
x2
-
1
x
=(
1
x
-
1
2
2-
1
4
恒成立,∵x∈(0,1],∴
1
x
≥1,当
1
x
=1时,(
1
x
-
1
2
2-
1
4
取到最小值为0,
∴a≤0,又a≠0,∴a的取值范围是(-∞,0).
由此可知,满足条件的实数a的取值恒为负数,由(1)可知函数f(x)是凸函数  (11分)
(3)令x=y=0,则f(0)=[f(0)]2,∵f(0)≠0,∴f(0)=1,(12分)
令y=-x,则1=f(0)=f(x-x)=f(x)f(-x),故f(x)=
1
f(?x)

若n∈N*,则f(n)=f[(n-1)+1]=f(n-1)f(1)=2f(n-1)=…=[f(1)]2;          (14分)
若n<0,n∈Z,则-n∈N*
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式