已知,如图:直线AB:y=x+8与x轴、y轴分别相交于点B、A,过点A作直线AB的垂线交x轴于点D.(1)求证:△A

已知,如图:直线AB:y=x+8与x轴、y轴分别相交于点B、A,过点A作直线AB的垂线交x轴于点D.(1)求证:△AOB≌△AOD;(2)求A、D两点确定的直线的函数关系... 已知,如图:直线AB:y=x+8与x轴、y轴分别相交于点B、A,过点A作直线AB的垂线交x轴于点D.(1)求证:△AOB≌△AOD;(2)求A、D两点确定的直线的函数关系式;(3)若点C是y轴负半轴上的任意一点,过点C作BC的垂线与AD相交于点E,请你判断:线段BC与CE的大小关系?并证明你的判断. 展开
 我来答
王者74136
推荐于2017-09-26 · TA获得超过202个赞
知道答主
回答量:167
采纳率:0%
帮助的人:57.2万
展开全部
解答:(1)解:对于直线y=x+8,
令x=0,求得y=8;令y=0,求得x=-8,
∴A(0,8),B(-8,0),
∴OA=OB=8,
∴∠ABO=∠BAO=45°,
又∵DA⊥AB,
∴∠OAD=90°-∠OAB=45°,
∴∠BAO=∠OAD,
又∵∠AOB=∠DOB=90°,
在△AOB和△AOD中,
∠BAO=∠OAD
AO=AO
∠AOB=∠AOD

∴△AOB≌△AOD(ASA),

(2)解:∵△AOB≌△AOD,
∴OD=OB=8,
∴D(8,0),
设AD的解析式为y=kx+b,则
8k+b=0
b=8

解得k=-1,b=8.
∴AD的解析式为y=-x+8.

(3)BC=CE,
证明:过点C作CF⊥y轴,交直线AB于点F,
∵BC⊥CE,
∴∠BCE=∠ACF=90°,
∴∠BCF=∠ACE,
又∵∠OAB=∠OAD=45°,
∴∠CFA=90°-45°=∠OAD,
∴∠BAC=∠AFC,
∴CA=CF,
在△ACE和△FCB中
∠EAC=∠AFC
CA=CF
∠BCF=∠ACE

∴△ACE≌△FCB(ASA),
∴BC=CE.
其它方法一:连接CD,然后证CD=CE;方法二:过点C作CG⊥y轴,交直线AD于点G,证△ECG≌△BCA.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式