(2013年四川眉山11分)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,
(2013年四川眉山11分)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B...
(2013年四川眉山11分)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax 2 +bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M. (1)求这条抛物线的解析式;(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.(3)请直接写出将该抛物线沿射线AD方向平移 个单位后得到的抛物线的解析式.
展开
吥丶錯過28
推荐于2016-12-01
·
超过69用户采纳过TA的回答
关注
解:(1)根据题意得,A(1,0),D(0,1),B(﹣3,0),C(0,﹣3), ∵抛物线经过点A(1,0),B(﹣3,0),C(0,﹣3), ∴ ,解得 。 ∴抛物线的解析式为:y=x 2 +2x﹣3。 (2)存在。△APE为等腰直角三角形,有三种可能的情形: ①以点A为直角顶点, 如图,过点A作直线AD的垂线,与抛物线交于点P,与y轴交于点F。 ∵OA=OD=1,∴△AOD为等腰直角三角形。 ∵PA⊥AD,∴△OAF为等腰直角三角形。 ∴OF=1,F(0,﹣1)。 设直线PA的解析式为y=kx+b, 将点A(1,0),F(0,﹣1)的坐标代入得: ,解得 。 ∴直线PA的解析式为y=x﹣1。 将y=x﹣1代入抛物线解析式y=x 2 +2x﹣3得 x 2 +2x﹣3=x﹣1,整理得:x 2 +x﹣2=0, 解得x=﹣2或x=1。 当x=﹣2时,y=x﹣1=﹣3。∴P(﹣2,﹣3)。 ②以点P为直角顶点, 此时∠PAE=45°,因此点P只能在x轴上或过点A与y轴平行的直线上。 过点A与y轴平行的直线,只有点A一个交点,故此种情形不存在; 因此点P只能在x轴上,而抛物线与x轴交点只有点A、点B,故点P与点B重合, ∴P(﹣3,0)。 ③以点E为直角顶点, 此时∠EAP=45°,由②可知,此时点P只能与点B重合,点E位于直线AD与对称轴的交点上。 综上所述,存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形。 点P的坐标为(﹣2,﹣3)或(﹣3,0)。 (3)y==x 2 +4x+1。 |
(1)应用待定系数法求出抛物线的解析式。 (2)△APE为等腰直角三角形,有三种可能的情形,需要分类讨论: ①以点A为直角顶点.过点A作直线AD的垂线,与抛物线的交点即为所求点P.首先求出直线PA的解析式,然后联立抛物线与直线PA的解析式,求出点P的坐标; ②以点P为直角顶点.此时点P只能与点B重合; ③以点E为直角顶点.此时点P亦只能与点B重合。 (3)抛物线的解析式为:y=x 2 +2x﹣3=(x+1) 2 ﹣4, ∵抛物线沿射线AD方向平移 个单位,相当于向左平移1个单位,并向上平移一个单位, ∴平移后的抛物线的解析式为:y=(x+1+1) 2 ﹣4+1=x 2 +4x+1。 |
已赞过
已踩过<
收起
为你推荐: