圆M;x^2+y^2-2mx-2ny+m^2-1=0与圆N:x^2+y^2+2x+2y-2=0交于AB两点两点平分圆N圆
1个回答
展开全部
AB两点两点平分圆N圆
AB为N圆直径
圆M;
(x-m)^2+(y-n)^2=1+n^2,圆心M(m,n)
圆N:
(x+1)^2+(y+1)^2=4,圆心N(-1,-1)
AB=2R=4
R^2+MN^2=AM^2
4+(m+1)^2+(n+1)^2=n^2+1
M圆心轨迹:
x^2+2x+2y+5=0
2)
x^2+2x+2y+5=0
(x+1)^2+2y+4=0
2y+4<=0,y<=-2
R^2=1+y^2半径R最小
x=-1,y=-2,Rmin=√(1+2^2)=√5
方程:(x+1)^2+(y+2)^2=5
AB为N圆直径
圆M;
(x-m)^2+(y-n)^2=1+n^2,圆心M(m,n)
圆N:
(x+1)^2+(y+1)^2=4,圆心N(-1,-1)
AB=2R=4
R^2+MN^2=AM^2
4+(m+1)^2+(n+1)^2=n^2+1
M圆心轨迹:
x^2+2x+2y+5=0
2)
x^2+2x+2y+5=0
(x+1)^2+2y+4=0
2y+4<=0,y<=-2
R^2=1+y^2半径R最小
x=-1,y=-2,Rmin=√(1+2^2)=√5
方程:(x+1)^2+(y+2)^2=5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询