发散数列是不是无界的?

 我来答
小精灵教育知识铺
高能答主

2021-10-11 · 教育是人们灵魂的教育,而非理智知识和认识的堆积。
小精灵教育知识铺
采纳数:132 获赞数:3624

向TA提问 私信TA
展开全部

没有。

无界数列一定发散,数列有界是数列存在极限的必要条件;但发散的数列不一定无解(比如{(-1)^n})。

发散数列就是当n趋近正无穷时,数列an总是不能接近某一个具体的数值,换句话说就是数列an没有极限,这样的数列就是发散数列。数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。

1、如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。

2、数列通项公式的特点:

(1)有些数列的通项公式可以有不同形式,即不唯一。

(2)有些数列没有通项公式。

有界性:设有数列xn,若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。

动植物世界
高粉答主

2021-10-08 · 原创动物解说创作者(原创、原创、原创) 每天都趴网看各位的评...
动植物世界
采纳数:235 获赞数:371936

向TA提问 私信TA
展开全部

无界是数列发散的充分但不必要条件。

每一种有意义的级数求和法表面上都有很重的主观定义色彩,但在数学内部多半都可找到它的深刻背景,像阿贝尔求和法,源于关于泰勒级数的阿贝尔极限定理;而算术平均求和法,就与傅里叶级数部分和的性态有关。

级数求和主要是针对发散级数提出来的。每一种求和法都能使某些发散级数有和,同时又希望按照它,所有的收敛级数都是可和的,并且所求出的和与其柯西和相等,这样的级数求和方法就称为正则的。级数的正则求和法是收敛性(柯西和)概念的直接推广,在调和分析、通近论等数学学科中有很多应用。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式