已知函数f(x)=(x^2+2x+a)/x,x∈[1,+∞]. 若a为正数,求f(x)的最小ŀ
4个回答
展开全部
楼主您好,
我认为也可以用导数来做,帮您回顾一下导数的知识
定义
设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x在x0处有增量△x(设x0+△x∈N(x0,δ)),函数y=f(x)相应的增量为△y=f(x0+△x)-f(x0). 如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim △y/△x=lim [f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(x)在x0处的导数或变化率.通常可以记为f'(x0)或f'(x)|x=x0.
函数的可导性与导函数
一般地,假设一元函数 y=f(x )在 点x0的某个邻域N(x0,δ)内有定义,当自变量取的增量Δx=x-x0时,函数相应增量为 △y=f(x0+△x)-f(x0),若函数增量△y与自变量增量△x之比当△x→0时的极限存在且有限,就说函数f(x)在x0点可导,并将这个极限称之为f在x0点的导数或变化率. “点动成线”:若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f(x)' 或y',称之为f的导函数,简称为导数.
导数的几何意义
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[x 导数的几何意义
0,f(x0)] 点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率).
求导数的方法
(1)利用定义求函数y=f(x)在x0处导数的步骤: ① 求函数的增量Δy=f(x0+Δx)-f(x0) ② 求平均变化率
③ 取极限,得导数。 (2)几种常见函数的导数公式: ① C'=0(C为常数函数) ② (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数 ③ (sinx)' = cosx (cosx)' = - sinx (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) ④(sinhx)'=coshx (coshx)'=sinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) ⑤ (e^x)' = e^x (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =x^(-1)logae(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2) 补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。 关于三角求导“正正余负”(三角包含三角函数,也包含反三角函数 正指正弦、正切与正割 。) (3)导数的四则运算法则(和、差、积、商): ①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2 (4)复合函数的导数: 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。 (5)积分号下的求导法 d(∫f(x,t)dt φ(x),ψ(x))/dx=f(x,ψ(x))ψ'(x)-f(x,φ(x))φ'(x)+∫[f 'x(x,t)dt φ(x),ψ(x)] 导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献!
最后祝您学习更上一层楼!!!
我认为也可以用导数来做,帮您回顾一下导数的知识
定义
设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x在x0处有增量△x(设x0+△x∈N(x0,δ)),函数y=f(x)相应的增量为△y=f(x0+△x)-f(x0). 如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim △y/△x=lim [f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(x)在x0处的导数或变化率.通常可以记为f'(x0)或f'(x)|x=x0.
函数的可导性与导函数
一般地,假设一元函数 y=f(x )在 点x0的某个邻域N(x0,δ)内有定义,当自变量取的增量Δx=x-x0时,函数相应增量为 △y=f(x0+△x)-f(x0),若函数增量△y与自变量增量△x之比当△x→0时的极限存在且有限,就说函数f(x)在x0点可导,并将这个极限称之为f在x0点的导数或变化率. “点动成线”:若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f(x)' 或y',称之为f的导函数,简称为导数.
导数的几何意义
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[x 导数的几何意义
0,f(x0)] 点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率).
求导数的方法
(1)利用定义求函数y=f(x)在x0处导数的步骤: ① 求函数的增量Δy=f(x0+Δx)-f(x0) ② 求平均变化率
③ 取极限,得导数。 (2)几种常见函数的导数公式: ① C'=0(C为常数函数) ② (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数 ③ (sinx)' = cosx (cosx)' = - sinx (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) ④(sinhx)'=coshx (coshx)'=sinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) ⑤ (e^x)' = e^x (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =x^(-1)logae(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2) 补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。 关于三角求导“正正余负”(三角包含三角函数,也包含反三角函数 正指正弦、正切与正割 。) (3)导数的四则运算法则(和、差、积、商): ①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2 (4)复合函数的导数: 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。 (5)积分号下的求导法 d(∫f(x,t)dt φ(x),ψ(x))/dx=f(x,ψ(x))ψ'(x)-f(x,φ(x))φ'(x)+∫[f 'x(x,t)dt φ(x),ψ(x)] 导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献!
最后祝您学习更上一层楼!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:a>0,且f(x)=(x^2+2x+a)/x,则
f'(x)=(x^2-a)/x^2
=(x+√a)(x-√a)/x^2
令f'(x)=0,x1=√a,x2=-√a
∴x=1,y最小值=3+a;
当x≥√a时,f'(x)>0,f(x)单调增;
当0<x<√a时,f'(x)<0,f(x)单调减;
f'(x)=(x^2-a)/x^2
=(x+√a)(x-√a)/x^2
令f'(x)=0,x1=√a,x2=-√a
∴x=1,y最小值=3+a;
当x≥√a时,f'(x)>0,f(x)单调增;
当0<x<√a时,f'(x)<0,f(x)单调减;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=x+a/x+2,在(0,√a)是减函数,在(√a,+∞)是增函数。
1≤√a即a≥1时f(x)的最小值=f(√a)=2√a+2.
√a<1即0<a<1时f(x)的最小值=f(1)=3+a.
1≤√a即a≥1时f(x)的最小值=f(√a)=2√a+2.
√a<1即0<a<1时f(x)的最小值=f(1)=3+a.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询