任意两个无穷小量都可以比较吗?

 我来答
八爪娱爫
高能答主

2022-02-23 · 有什么不懂的尽管问我
知道小有建树答主
回答量:624
采纳率:100%
帮助的人:14.3万
展开全部

并不是任何两个无穷小量都可作阶的比较。比如f(x)=x×sin(1/x),g(x)=x,x→0,f(x)/g(x)的极限不存在,无法比较。任意两个无穷小都可以比较大小,无穷小的比较,不是比较两个无穷小的数值谁大谁小,而是谁趋于0更快。

将两个无穷小相比取极限,即可知道无穷小的大小关系。例如,一个无穷小的极值是0,另一个是-1,那么就是极值是0的更大。

无穷小量

无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。

确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。

茹翊神谕者

2023-08-09 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1672万
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式