证明若A是n阶正定矩阵,则存在n阶正定矩阵B,使A=B^2 我来答 1个回答 #合辑# 面试问优缺点怎么回答最加分? 清宁时光17 2022-05-18 · TA获得超过1.4万个赞 知道大有可为答主 回答量:6697 采纳率:100% 帮助的人:37万 我也去答题访问个人页 关注 展开全部 如果A=U'U,则A'=(U'U)'=U'U=A,故A是对称的,对任意非零x,由U可逆,Ux也非零,由 x'Ax=x'U'Ux=(Ux)'(Ux)>0,故A是正定矩阵.充分性得证. 如果A为对称正定矩阵,则它可以进行LL'分解,即存在下三角阵L使得A=LL',令U=L',即得A=U'U,必要性得证. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-07-18 证明若A是n阶正定矩阵,则存在 n阶正定矩阵B,使得A=B^2 2022-05-19 证明若A是n阶正定矩阵,则存在 n阶正定矩阵B,使得A=B^2 2022-05-23 证明:A,B均为N阶正定矩阵,则A+B也为正定矩阵 2022-06-19 设A,B均是n阶正定矩阵,证明A+B是正定矩阵 2022-08-08 试证:若A是n阶正定矩阵,B是n阶半正定矩阵,则A+B是正定矩阵 2022-09-28 设A,B均是n阶正定矩阵,证明A+B是正定矩阵? 2022-06-29 设A,B都是n阶正定矩阵,证明2A+3B也是正定矩阵 写出证明过程 2022-06-18 A,B都为n阶正定矩阵,证明:AB是正定矩阵的充分必要条件是AB=BA. 为你推荐: