怎么求tan1tan3 tan3tan5 .tan(2n-1)tan(2n 1)
展开全部
题目应该是求tan1tan3+tan3tan5+ .+tan(2n-1)tan(2n+1)
tan2=tan(2i+1-(2i-1))=(tan(2i+1)-tan(2i-1))/(1+tan(2i-1)tan(2i+1))
=>tan(2i-1)tan(2i+1)=(tan(2i+1)-tan(2i-1))/tan2 -1
=>tan1tan3+tan3tan5+ .+tan(2n-1)tan(2n+1)
=(tan3-tan1)/tan2-1+(tan5-tan3)/tan2-1...+(tan(2n+1)-tan(2n-1))/tan2-1
=(tan3-tan1+tan5-tan3...+tan(2n+1)-tan(2n-1))/tan2-n
=(tan(2n+1)-tan1)/tan2-n
tan2=tan(2i+1-(2i-1))=(tan(2i+1)-tan(2i-1))/(1+tan(2i-1)tan(2i+1))
=>tan(2i-1)tan(2i+1)=(tan(2i+1)-tan(2i-1))/tan2 -1
=>tan1tan3+tan3tan5+ .+tan(2n-1)tan(2n+1)
=(tan3-tan1)/tan2-1+(tan5-tan3)/tan2-1...+(tan(2n+1)-tan(2n-1))/tan2-1
=(tan3-tan1+tan5-tan3...+tan(2n+1)-tan(2n-1))/tan2-n
=(tan(2n+1)-tan1)/tan2-n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询