函数的极值有什么用
4个回答
展开全部
函数的极值是高等数学中微分学理论的一个重要的组成部分,它在数 学教学、工农业生产、工程技术及科学实验等方面,常常会遇到这样 一类的问题:在一定条件下,怎样使“产品最多”、“用料最省”, “成本最低”、“效率最高”等,这类问题在数学上可归结为求某一 函数的最大值或最小值问题,本文介绍了一元函数、多元函数的极大 值和极小值问题,通过典型例题阐明函数极大值和极小值的求法及其 在经济中的应用。 1 一元函数的极值 定义①:设函数()在区间()内有定义,(),若在的某去心邻域 内有:()≤()(或()≥()),则称()是函数()的一个极 大值(或极小值),称为()的极大值点(或极小值点)。极大值 与极小值统称为函数的极值,极大值点与极小值点统称为函数的极值 点。一元函数极值的求法比较简单,
展开全部
极值是一个函数的最大值或最小值。在数学分析中,函数的最大值和最小值(最大值和最小值)被统称为极值(极数),是给定范围内的函数的最大值和最小值。如果一个函数在一点的一个定义域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。极值与最值的关系:
函数的极大值和极小值概念是局部性的. 如果是函数的一个极大值, 那只是就附近的一个局部范围来说, 是的一个最大值; 如果就的整个定义域来说, 不一定是最大值. 对于极小值情况类似.
设函数在闭区间上连续, 则函数的最大值和最小值一定存在. 函数的最大值和最小值有可能在区间的端点取得, 如果最大值不在区间的端点取得, 则必在开区间内取得, 在这种情况下, 最大值一定是函数的极大值. 因此, 函数在闭区间上的最大值一定是函数的所有极大值和函数在区间端点的函数值中最大者. 同理, 函数在闭区间[a, b]上的最小值一定是函数的所有极小值和函数在区间端点的函数值中最小者.
二、最大值和最小值问题
设在内的驻点和不可导点(它们是可能的极值点)为, 则比较的大小, 其中最大的便是函数在上的最大值, 最小的便是函数在上的最小值.
求最大值和最小值的步骤
(1).求驻点和不可导点;
(2).求区间端点及驻点和不可导点的函数值,比较大小,那个大那个就是最大值,那个小那个就是最小值;
注意:如果区间内只有一个极值,则这个极值就是最值.(最大值或最小值)
例3-30 求函数在上的最大值和最小值
解
由于
因此函数在上的最大值为
最小值为
例3-31 求函数在上的最大值与最小值.
解 由于,
所以
求得在(-3, 4)内的驻点为,不可导点为
而,,
函数的极大值和极小值概念是局部性的. 如果是函数的一个极大值, 那只是就附近的一个局部范围来说, 是的一个最大值; 如果就的整个定义域来说, 不一定是最大值. 对于极小值情况类似.
设函数在闭区间上连续, 则函数的最大值和最小值一定存在. 函数的最大值和最小值有可能在区间的端点取得, 如果最大值不在区间的端点取得, 则必在开区间内取得, 在这种情况下, 最大值一定是函数的极大值. 因此, 函数在闭区间上的最大值一定是函数的所有极大值和函数在区间端点的函数值中最大者. 同理, 函数在闭区间[a, b]上的最小值一定是函数的所有极小值和函数在区间端点的函数值中最小者.
二、最大值和最小值问题
设在内的驻点和不可导点(它们是可能的极值点)为, 则比较的大小, 其中最大的便是函数在上的最大值, 最小的便是函数在上的最小值.
求最大值和最小值的步骤
(1).求驻点和不可导点;
(2).求区间端点及驻点和不可导点的函数值,比较大小,那个大那个就是最大值,那个小那个就是最小值;
注意:如果区间内只有一个极值,则这个极值就是最值.(最大值或最小值)
例3-30 求函数在上的最大值和最小值
解
由于
因此函数在上的最大值为
最小值为
例3-31 求函数在上的最大值与最小值.
解 由于,
所以
求得在(-3, 4)内的驻点为,不可导点为
而,,
追答
极值是一个函数的最大值或最小值。在数学分析中,函数的最大值和最小值(最大值和最小值)被统称为极值(极数),是给定范围内的函数的最大值和最小值。如果一个函数在一点的一个定义域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。极值与最值的关系:函数的极大值和极小值概念是局部性的. 如果是函数的一个极大值, 那只是就附近的一个局部范围来说, 是的一个最大值; 如果就的整个定义域来说, 不一定是最大值. 对于极小值情况类似.设函数在闭区间上连续, 则函数的最大值和最小值一定存在. 函数的最大值和最小值有可能在区间的端点取得, 如果最大值不在区间的端点取得, 则必在开区间内取得, 在这种情况下, 最大值一定是函数的极大值. 因此, 函数在闭区间上的最大值一定是函数的所有极大值和函数在区间端点的函数值中最大者. 同理, 函数在闭区间[a, b]上的最小值一定是函数的所有极小值和函数在区间端点的函数值中最小者.二、最大值和最小值问题设在内的驻点和不可导点(它们是可能的极值点)为, 则比较的大小, 其中最大的便是函数在上的最大值, 最小的便是函数在上的最小值.求最大值和最小值的步骤(1).求驻点和不可导点;(2).求区间端点及驻点和不可导点的函数值,比较大小,那个大那个就是最大值,那个小那个就是最小值;注意:如果区间内只有一个极值,则这个极值就是最值.(最大值或最小值)例3-30 求函数在上的最大值和最小值解 由于 因此函数在上的最大值为最小值为例3-31 求函数在上的最大值与最小值.解 由于,所以求得在(-3, 4)内的驻点为,不可导点为而,,
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2022-12-03
展开全部
判断 领域内的大小
或在图像上就是判断函数图像的凹凸性
或在图像上就是判断函数图像的凹凸性
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询