设函数f(x)=(2x+1)/x [x>0] 数列an满足a1=1,an=f[1/a(n-1)]?

 我来答
黑科技1718
2022-10-21 · TA获得超过5882个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.2万
展开全部
1)根据条件,可以知道f(x)=(2x+1)/x=2+(1/x)
an=f[1/a(n-1)]=2+a(n-1)
所以{an}是以2为公差的等差数列
容易求得an=2n-1 这是一个奇数数列
根据Tn的公式,可以知道在Tn公式中,n为偶数,因为最后一项为负数,
所以Tn可以变形为:
Tn=a2(a1-a3)+a4(a3-a5)+……+an[a(n-1)-a(n+1)]
=-4a2-4a4-4a6-……-4an
=-4(a2+a4+a6+……an)
=-4[n/4(a2+an)]=-n(a2+an)
把a2=3,an=2n-1代入得到
Tn=-2n(n+1)
要使Tn≥tn^2恒成立,
即-2n(n+1)≥tn^2恒成立
即-2(n+1))≥tn
t=1
所以t,4,
doudou0083 举报
好吧,既然有 (-1) ^(n-1),就得分开考虑,n是偶数,就是我上面写的, 如果n为奇数,Tn=-4[a2+a4+……a(n-1)]+ana(n+1) 变形过程就不再写了,可以得到Tn=2n^2+2n-1 所以就是要求2n^2+2n-1>=tn^2恒成立 变形(2-t)n^2+2n-1>=0要恒成立 当n为偶数时,已要求t<=-3, 该条件在n为奇数时也是恒成立,所以还是t<=-3,an 1=an/(2an 1) 1/an 1=(2an 1)/2=1/an 2 1/an 1-1/an=2
所以1/an是首项为1,公差为2的等差,1/an=1 2(n-1)=2n-1
2n×1/an=2n(2n-1)=4n^2-2n
所以sn=4(1^2 2^2 ... n^2)-2(1 2 ...n)=4×n(n 1)(2n 1)/6 -n(n 1)=(4n-1)n(n 1)/3,0,设函数f(x)=(2x+1)/x [x>0] 数列an满足a1=1,an=f[1/a(n-1)]
1) 设Tn=a1a2-a2a3+a3a4-a4a5+……+(-1)ana(n+1),若Tn≥tn^2恒成立,求t的取值范围.
2) 是否存在以a1为首项,公比为q[0<q<5] 的等比数列{a(nk)}中每一项都是数列{an}中不同的项,若存在求出所有满足条件的数列的通项公式.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式