1.设f(x)在区间[0,1]上连续,证明:∫ 0到派 xf(sinx)dx=派∫0到派/2 f(sinx)dx?
1个回答
展开全部
证明:
令t=π-x,则x∈[0,π]时,t∈[π,0] dx=-dt
则I=∫(0→π) xf(sinx) dx
=-∫(π→0) (π-t)f(sin(π-t)) dt
=-∫(π→0) (π-t)f(sint) dt
=∫(0→π)(π-t)f(sint) dt
=∫(0→π)πf(sint) dt-∫(0→π)tf(sint)dt
=∫(0→π)πf(sinx) dx-I
∴I=(1/2)∫(0→π)πf(sinx) dx=π∫(0→π/2)f(sinx) dx
证毕,10,
令t=π-x,则x∈[0,π]时,t∈[π,0] dx=-dt
则I=∫(0→π) xf(sinx) dx
=-∫(π→0) (π-t)f(sin(π-t)) dt
=-∫(π→0) (π-t)f(sint) dt
=∫(0→π)(π-t)f(sint) dt
=∫(0→π)πf(sint) dt-∫(0→π)tf(sint)dt
=∫(0→π)πf(sinx) dx-I
∴I=(1/2)∫(0→π)πf(sinx) dx=π∫(0→π/2)f(sinx) dx
证毕,10,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询