如图所示,已知矩阵A有3个线性无关的特征向量,则x,y 应该满足什么关系?
首先求出A的特征值为1,1,-1,根据定理A可对角化,因而对于二重根1有r(I-A)=3-2=1,从而可求出条件为x+y=0。
推导使用定理:
定理:n阶阵A可对角化的充分必要条件是A有n个线性无关的特征向量。
定理:n阶阵A可对角化的充分必要条件是对A的任一k重根都有r(λI-A)=n-k。
扩展资料:
求特征值
描述正方形矩阵的特征值的重要工具是特征多项式,λ是A的特征值等价于线性方程组(A _ λI) v = 0 (其中I是单位矩阵)有非零解v (一个特征向量),因此等价于行列式|A _ λI|=0 [1] 。
函数p(λ) = det(A _ λI)是λ的多项式,因为行列式定义为一些乘积的和,这就是A的特征多项式。矩阵的特征值也就是其特征多项式的零点。
一个矩阵A的特征值可以通过求解方程pA(λ) = 0来得到。 若A是一个n×n矩阵,则pA为n次多项式,因而A最多有n个特征值。
反过来,代数基本定理说这个方程刚好有n个根,如果重根也计算在内的话。所有奇数次的多项式必有一个实数根,因此对于奇数n,每个实矩阵至少有一个实特征值。在实矩阵的情形,对于偶数或奇数的n,非实数特征值成共轭对出现。
求特征向量
一旦找到两两互不相同的特征值λ,相应的特征向量可以通过求解方程(A _ λI) v = 0 得到,其中v为待求特征向量,I为单位阵。
当特征值出现重根时,如λ1=λ2,此时,特征向量v1的求解方法为(A-λ1I)v1=0,v2为(A-λ2I)v2=v1,依次递推。
没有实特征值的一个矩阵的例子是顺时针旋转90度。
参考资料来源:百度百科--特征向量
参考资料来源:百度百科--矩阵