二次函数求解析式的三种方法
1个回答
展开全部
二次函数求解析式的三种方法如下:
方法一:运用一般式y=ax^2+bx+c,把抛物线经过的三点坐标代入,得关于待定系数a、b、c的方程组,再解之即可。抛物线表达式中的一般式y=ax^2+bx+c又称三点式,如果已知抛物线经过三点的坐标求解析式时,一般采用这种方法。这种解法具有思路清晰,方法简便之优点,但解三元一次方程组略显枯燥乏味。
方法二:运用顶点式y=a(x-h)^2+k,把抛物线的顶点坐标(h,k)直接代入,再根据其他条件列出关于a或h或k的方程(组),再解之即可。
抛物线表达式中的顶点式y=a(x-h)^2+k又称配方式,在已知抛物线的顶点坐标或对称轴或最大(或最小)值求解析式时一般可采用这种方法。运用这种解法的关键在于发现抛物线的顶点坐标,从而减少未知系数,使方程(组)的求解更简便。
方法三:运用交点式y=a(x-x1)(x-x2),直接将抛物线与x轴的交点坐标(x1,0)、(x2,0)代入,再根据其他条件列出关于a的方程,再解之即可。
抛物线表达式中的交点式y=a(x-x1)(x-x2)又称两根式,在已知抛物线与x轴的交点坐标求解析式时一般采用这种方法,直接把x轴上的交点坐标代入交点式,再根据其他条件确定a及其他未知的值。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询