a+ b为什么大于2√ab,为什么?

 我来答
云剖N
2023-08-02 · TA获得超过184个赞
知道大有可为答主
回答量:3762
采纳率:0%
帮助的人:83.7万
展开全部

这个问题涉及到数学中的不等式关系。我们来解释一下为什么"a + b"大于等于"2√ab"。

1. 定义来源和讲解:

首先,我们可以通过平方不等式来解释这个关系。对于任意的实数a和b,根据平方不等式,有:

(a - b)² ≥ 0

根据平方不等式的性质,我们可以展开(a - b)²:

a² - 2ab + b² ≥ 0

2. 知识点运用:

现在我们可以对不等式进行变形,通过移动项的位置来推导出"a + b"大于等于"2√ab"这个关系。

首先,我们将2ab移到不等式的右边:

a² + 2ab + b² ≥ 4ab

然后,我们在两边同时开方,得到:

√(a² + 2ab + b²) ≥ √(4ab)

继续简化:

√(a + b)² ≥ 2√ab

由于根号下的平方数是正数,我们可以去掉根号内的平方符号:

a + b ≥ 2√ab

这就是为什么"a + b"大于等于"2√ab"。

3. 知识点例题讲解:

问题:如果a = 4,b = 9,那么a + b是否大于等于2√ab?

解答:代入a和b的值,我们有:

4 + 9 = 13

2√(4 × 9) = 2√36 = 2 × 6 = 12

因此,13大于等于12,所以a + b大于等于2√ab成立。

这个例题验证了不等式关系"a + b"大于等于"2√ab"在特定的数值情况下的正确性。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式