自适应滤波方法涉及的理论基础有哪些
自适应滤波方法对某一点的滤波平滑,依赖于该点邻域的信息统计,而该邻域的尺寸范围也由该邻域的信息统计决定.自适应滤波方法常用于条纹密度变化较大的条纹图像的预处理。
原理:利用前一时刻获得的滤波结果,自动调节现时刻的滤波器参数,以适应信号和噪声的未知特性,从而实现最优滤波。
最优的准则:
1、最小均方误差准则(minimum mean square error, MMSE)
使误差的均方值最小
2、最小二乘准则(least square error, LSE)
使误差的平方和最小
扩展资料
自适应滤波的研究对象是具有不确定的系统或信息过程。这里的“不确定性”是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因素和随机因素。
任何一个实际的信息过程都具有不同程度的不确定性,这些不确定性有时表现在过程内部,有时表现在过程外部。从过程内部来讲,描述研究对象即信息动态过程的数学模型的结构和参数是设计者事先并不一定能确切知道的。作为外部环境对信息过程的影响,可以等效地用扰动来表示。
这些扰动通常是不可测的,它们可能是确定性的,也可能是随机的。此外,还有一些测量噪音 也以不同的途径影响信息过程。这些扰动和噪声的统计特性常常是未知的。
面对这些客观存在的各式各样的不确定性,如何综合处理该信息过程,并使得某一些指定的性能指标达到最优或近似最优,这就是自适应滤波所要解决的问题。
参考资料来源:百度百科-自适应滤波法
参考资料来源:百度百科-自适应滤波
2021-07-30 广告
⑴低通滤波器从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。
⑵高通滤波器与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。
⑶带通滤波器它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。
⑷带阻滤波器与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。