收敛数列的性质极限的唯一性证明没看懂?
详解如下:
假设数列an收敛于实数A和实数B,其中A≠B,不妨假设A<B。那么对于任给的e,总存在N>0,使得对于任意的n≥N,总有
|an-A|<e
取e=(B-A)/2,那么对于任意的n≥N,必有
|an-A|<(B-A)/2
即A-(B-A)/2<an<A+(B-A)/2
即(3A-B)/2<an<(A+B)/2
因此
(3A-B)/2-B<an-B<(A+B)/2-B
即
3(A-B)/2<an-B<(A-B)/2
由于A<B,所以A-B<0
因此an-B<(A-B)/2<0对于任意的n≥N成立。
即|an-B|>|A-B|/2对于任意的n≥N成立。
因此存在一个e'=|A-B|/2>0,使得对于任意的N'>0,总会有更大的N''>N且N>N',使得
对于任意的n≥N'',总是不满足|an-B|<e'。
根据数列极限的e-N定义法,数列an不收敛于B。
收敛简介:
收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
绝对收敛,指的是不论条件如何,穷国比富国收敛更快。
条件收敛,指的是技术给定其他条件一样的话,人均产出低的国家,相对于人均产出高的国家,有着较高的人均产出增长率,一个国家的经济在远离均衡状态时,比接近均衡状态时,增长速度快。
|an-A|<e
取e=(B-A)/2,那么对于任意的n≥N,必有
|an-A|<(B-A)/2
即A-(B-A)/2<an<A+(B-A)/2
即(3A-B)/2<an<(A+B)/2
因此
(3A-B)/2-B<an-B<(A+B)/2-B
即
3(A-B)/2<an-B<(A-B)/2
由于A<B,所以A-B<0
因此an-B<(A-B)/2<0对于任意的n≥N成立。
即|an-B|>|A-B|/2对于任意的n≥N成立。
因此存在一个e'=|A-B|/2>0,使得对于任意的N'>0,总会有更大的N''>N且N>N',使得
对于任意的n≥N'',总是不满足|an-B|<e'。
根据数列极限的e-N定义法,数列an不收敛于B。