an+1=2an,已知的前n项和为Sn且a1=1,an+1=Sn,求an。这个算出来an要分
an+1=2an,已知的前n项和为Sn且a1=1,an+1=Sn,求an。这个算出来an要分n=1和n≠1,为什么会有两种?算出来什么时候要检验a1满不满足,什么时候又不...
an+1=2an,已知的前n项和为Sn且a1=1,an+1=Sn,求an。这个算出来an要分n=1和n≠1,为什么会有两种?算出来什么时候要检验a1满不满足,什么时候又不检验?
展开
2017-10-26
展开全部
a2²=S2+S1=a1+a2+a1=2a1+a2=2×1+a2=a2+2
a2²-a2-2=0
(a2+1)(a2-2)=0
a2=-1(舍去)或a2=2
a(n+1)²=S(n+1)+Sn
a(n+2)²=S(n+2)+S(n+1)
a(n+2)²-a(n+1)²=S(n+2)-Sn=a(n+2)+a(n+1)
[a(n+2)+a(n+1)][a(n+2)-a(n+1)]-[a(n+2)+a(n+1)]=0
[a(n+2)+a(n+1)][a(n+2)-a(n+1)-1]=0
数列是正项数列,a(n+2)+a(n+1)恒>0,因此只有a(n+2)-a(n+1)-1=0
a(n+2)-a(n+1)=1,为定值,又a2-a1=2-1=1,数列{an}是以1为首项,1为公差的等差数列。
an=1+1×(n-1)=n
a2²-a2-2=0
(a2+1)(a2-2)=0
a2=-1(舍去)或a2=2
a(n+1)²=S(n+1)+Sn
a(n+2)²=S(n+2)+S(n+1)
a(n+2)²-a(n+1)²=S(n+2)-Sn=a(n+2)+a(n+1)
[a(n+2)+a(n+1)][a(n+2)-a(n+1)]-[a(n+2)+a(n+1)]=0
[a(n+2)+a(n+1)][a(n+2)-a(n+1)-1]=0
数列是正项数列,a(n+2)+a(n+1)恒>0,因此只有a(n+2)-a(n+1)-1=0
a(n+2)-a(n+1)=1,为定值,又a2-a1=2-1=1,数列{an}是以1为首项,1为公差的等差数列。
an=1+1×(n-1)=n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询