为什么实对称矩阵要求其正交矩阵,而不是可逆矩阵使其对角化?

 我来答
aii猪猪侠
推荐于2019-10-19 · TA获得超过2911个赞
知道小有建树答主
回答量:5
采纳率:0%
帮助的人:722
展开全部

题目为什么往往要求求正交矩阵,这也是为什么要讨论对角化的一个主要的目的之一,是为了求已知矩阵A的n次方,即A^n

因为T^(-1)AT=B(对角阵)

那么A^n=TB^nT^(-1)

由于对角阵B的n次方很好求,所以把A^n转化成B^n

但是如果矩阵T只是可逆,那么求它逆需要一定的过程,

而如果矩阵T是正交矩阵的话,那么它的逆就是它的转置,求起来更加方便 ,

因此一般来讲对于实对称矩阵,我们都要求要会求其正交矩阵。

实对称矩阵是矩阵,对的,但是实对称矩阵是一种特殊的矩阵,作为特殊的矩阵,那么除了一般矩阵性质以外还有一些特殊的性质,比如

1)实对称矩阵的特征值全为实数,

2)实对称矩阵中属于不同特征值的特征向量必正交。

3)n阶实对称矩阵一定有n个线性无关的特征向量。

4)实对称矩阵一定可以对角化。

由性质4可知:对于实对称矩阵,一定存在可逆阵T, 使得T^(-1)AT=对角阵。

招凝莲0ie1dd
2018-01-02 · TA获得超过6154个赞
知道大有可为答主
回答量:1301
采纳率:100%
帮助的人:595万
展开全部
“俊狼猎英”团队为您解答:
实对称矩阵是矩阵,对的,但是实对称矩阵是一种特殊的矩阵,作为特殊的矩阵,那么除了一般矩阵性质以外还有一些特殊的性质,比如
1)实对称矩阵的特征值全为实数,
2)实对称矩阵中属于不同特征值的特征向量必正交。
3)n阶实对称矩阵一定有n个线性无关的特征向量。
4)实对称矩阵一定可以对角化。
由性质4可知:对于实对称矩阵,一定存在可逆阵T, 使得T^(-1)AT=对角阵。
至于为什么实对称矩阵一定要求正交矩阵,这个对于题目来没有一定的要求,如果单单讨论它的对角化问题,你不一定非要求出是正交矩阵的。要求正交矩阵,往往是题目的要求。
至于题目为什么往往要求求正交矩阵,这也是为什么要讨论对角化的一个主要的目的之一,是为了求已知矩阵A的n次方,即A^n
因为T^(-1)AT=B(对角阵)
那么A^n=TB^nT^(-1)
由于对角阵B的n次方很好求,所以把A^n转化成B^n
但是如果矩阵T只是可逆,那么求它逆需要一定的过程,
而如果矩阵T是正交矩阵的话,那么它的逆就是它的转置,求起来更加方便 ,
因此一般来讲对于实对称矩阵,我们都要求要会求其正交矩阵。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式