7个回答
展开全部
一 题二 题三 题四 题五 搜全网
题目
已知函数f(x)=|x+a|+|2x-1|(a∈R).
(Ⅰ)当a=1时,求不等式f(x)≥2的解集;
(Ⅱ)若f(x)≤2x的解集包含[
1
2
,1],求a的取值范围.
解析
(1)通过分类讨论,去掉绝对值函数中的绝对值符号,转化为分段函数,即可求得不等式f(x)>0的解集;
(2)由题意知,不等式可化为|x+a|+2x-1≤2x,即|x+a|≤1,解得-a-1≤x≤-a+1,
由f(x)≤2x的解集包含[
1
2
,1],可得
−a−1≤
1
2
−a+1≥1
,解出即可得到a的取值范围.
解答
(1)当a=1时,不等式f(x)≥2可化为|x+1|+|2x-1|≥2,
①当x≥
1
2
时,不等式为3x≥2,解得x≥
2
3
,
故此时不等式f(x)≥2的解集为x≥
2
3
;
②当-1≤x<
1
2
时,不等式为2-x≥2,解得x≤0,
故此时不等式f(x)≥2的解集为-1≤x<0;
③当x<-1时,不等式为-3x≥2,解得x≤−
2
3
,故x<-1;
综上原不等式的解集为{x|x≤0或x≥
2
3
};
(2)因为f(x)≤2x的解集包含[
1
2
,1],
不等式可化为|x+a|+2x-1≤2x,即|x+a|≤1,
解得-a-1≤x≤-a+1,
由已知得
−a−1≤
1
2
−a+1≥1
,解得−
3
2
≤a≤0
所以a的取值范围是[−
3
2
,0].
题目
已知函数f(x)=|x+a|+|2x-1|(a∈R).
(Ⅰ)当a=1时,求不等式f(x)≥2的解集;
(Ⅱ)若f(x)≤2x的解集包含[
1
2
,1],求a的取值范围.
解析
(1)通过分类讨论,去掉绝对值函数中的绝对值符号,转化为分段函数,即可求得不等式f(x)>0的解集;
(2)由题意知,不等式可化为|x+a|+2x-1≤2x,即|x+a|≤1,解得-a-1≤x≤-a+1,
由f(x)≤2x的解集包含[
1
2
,1],可得
−a−1≤
1
2
−a+1≥1
,解出即可得到a的取值范围.
解答
(1)当a=1时,不等式f(x)≥2可化为|x+1|+|2x-1|≥2,
①当x≥
1
2
时,不等式为3x≥2,解得x≥
2
3
,
故此时不等式f(x)≥2的解集为x≥
2
3
;
②当-1≤x<
1
2
时,不等式为2-x≥2,解得x≤0,
故此时不等式f(x)≥2的解集为-1≤x<0;
③当x<-1时,不等式为-3x≥2,解得x≤−
2
3
,故x<-1;
综上原不等式的解集为{x|x≤0或x≥
2
3
};
(2)因为f(x)≤2x的解集包含[
1
2
,1],
不等式可化为|x+a|+2x-1≤2x,即|x+a|≤1,
解得-a-1≤x≤-a+1,
由已知得
−a−1≤
1
2
−a+1≥1
,解得−
3
2
≤a≤0
所以a的取值范围是[−
3
2
,0].
追问
?
我是问图片里面的那道题怎么求
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2020-04-12
展开全部
换元法,令t=tanx,则t的取值范围为[-1,1],然后求一个简单二次函数的值域了。
可关注WXGZH:追寻数学解题通法。
可关注WXGZH:追寻数学解题通法。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询