展开全部
空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模(modulus)。规定:
1.长度为0的向量叫做零向量,记为0。
2.模为1的向量称为单位向量。
3.与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a。
4.方向相等且模相等的向量称为相等向量。
1、共线向量定理
两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb
2、共面向量定理
如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by
3、空间向量分解定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。
任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
三个坐标面把空间分成八个部分,每个部分叫做一个卦限。含有x轴正半轴、y轴正半轴、z轴正半轴的卦限称为第一卦限,其他第二、三、四卦限,在xoy面的上方,按逆时针方向确定。在第一、二、三、四卦限下面的部分分别称为第五、六、七、八卦限。
1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB
2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面.
3、利用向量证a∥b,就是分别在a,b上取向量a=λb(λ∈R).
4、利用向量证a⊥b,就是分别在a,b上取向量a·b=0 .
5、利用向量求两直线a与b的夹角,就是分别在a,b上取 a,b,求:<a,b> 的问题.
6、利用向量求距离即求向量的模问题.
7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.
希望我能帮助你解疑释惑。
1.长度为0的向量叫做零向量,记为0。
2.模为1的向量称为单位向量。
3.与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a。
4.方向相等且模相等的向量称为相等向量。
1、共线向量定理
两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb
2、共面向量定理
如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by
3、空间向量分解定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。
任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
三个坐标面把空间分成八个部分,每个部分叫做一个卦限。含有x轴正半轴、y轴正半轴、z轴正半轴的卦限称为第一卦限,其他第二、三、四卦限,在xoy面的上方,按逆时针方向确定。在第一、二、三、四卦限下面的部分分别称为第五、六、七、八卦限。
1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB
2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面.
3、利用向量证a∥b,就是分别在a,b上取向量a=λb(λ∈R).
4、利用向量证a⊥b,就是分别在a,b上取向量a·b=0 .
5、利用向量求两直线a与b的夹角,就是分别在a,b上取 a,b,求:<a,b> 的问题.
6、利用向量求距离即求向量的模问题.
7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.
希望我能帮助你解疑释惑。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询