求函数极限的方法总结
展开全部
1、利用定义求极限。
2、利用柯西准则来求。
柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数n,使得当n>n时,对于
任意的自然数m有|xn-xm|<ε.
3、利用极限的运算性质及已知的极限来求。
如:lim(x+x^0.5)^0.5/(x+1)^0.5
=lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5
=1.
4、利用不等式即:夹挤定理。
5、利用变量替换求极限。
例如lim
(x^1/m-1)/(x^1/n-1)
可令x=y^mn
得:=n/m.
6、利用两个重要极限来求极限。
(1)lim
sinx/x=1
x->0
(2)lim
(1+1/n)^n=e
n->∞
7、利用单调有界必有极限来求。
8、利用函数连续得性质求极限。
9、用洛必达法则求,这是用得最多的。
10、用泰勒公式来求,这用得也很经常。
2、利用柯西准则来求。
柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数n,使得当n>n时,对于
任意的自然数m有|xn-xm|<ε.
3、利用极限的运算性质及已知的极限来求。
如:lim(x+x^0.5)^0.5/(x+1)^0.5
=lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5
=1.
4、利用不等式即:夹挤定理。
5、利用变量替换求极限。
例如lim
(x^1/m-1)/(x^1/n-1)
可令x=y^mn
得:=n/m.
6、利用两个重要极限来求极限。
(1)lim
sinx/x=1
x->0
(2)lim
(1+1/n)^n=e
n->∞
7、利用单调有界必有极限来求。
8、利用函数连续得性质求极限。
9、用洛必达法则求,这是用得最多的。
10、用泰勒公式来求,这用得也很经常。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |