函数u=x+y+z在球面x^2+y^2+z^2=1上点(x0.y0.z0)处沿球面在该点的外法线方向的方向导数为!!!

 我来答
思味搅团bn
2019-10-09 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:26%
帮助的人:629万
展开全部
解:设f(x,y,z)=x^2+y^2+z^2-1
先求出球面在该点处的外法线n:
f'x=2x,f'y=2y,f'z=2z.又n=(f'x0,f'y0,f'z0)(详见同济高数第五版下册P43)
得法线向量为(2x0,2y0,2z0)
得法向量单位向量为:e=(x0,y0,z0)
方向导数=u'xcosα+u'ycosβ+u'zcosγ(祥见同济高数第五版下册P47)
所以:方向导数为1*x0+1*y0+1*z0=x0+y0+z0
逢灵萱帛齐
2019-03-27 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:30%
帮助的人:785万
展开全部
解:设f(x,y,z)=x^2+y^2+z^2-1=0则有m(x0,y0,z0)点球面的法(外)线l方向存在向量n={fx,fy,fz}|m=2{x0,y0,z0}=2n1
又因为{au/ax,au/ay,au/az}|m={1,1,1}
那么au/al={1,1,1}*{x0,y0,z0}=x0,y0,z0
即得上点(x0,y0,z0)处,沿球面在该点的外法线方向的方向导数au/al={1,1,1}*{x0,y0,z0}=x0,y0,z0
完毕.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式