已知函数f(x)=xe^-x(x属于R) 如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2

 我来答
黑科技1718
2022-07-01 · TA获得超过5817个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:79.4万
展开全部
由于f(x)=xe^(-x),x∈R
所以x=f(x)/(e^x)
由题意,可以设f(x1)=f(x2)=K
所以:x1=f(x1)/(e^x1)=K/(e^x1)
同理:x2=K/(e^x2)
考虑到x1与x2的对称性,不妨设x10,f(x)单调减少.
因为f(x1)-f(x2)=(x1-x2)f'(s)=0……中值定理
其中x1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式