非齐次高阶微分方程的求解 55
展开全部
特征方程 EIr^4 + k = 0, r^4 = -k/(EI) , 记为 λ = [k/(EI)]^(1/4),
得 r = λ[cos(π+2kπ)/4 + isin(π+2kπ)/4], k = 0, 1, 2, 3.
r1 = λ(1/√2 + i/√2), r2 = λ(-1/√2 + i/√2),
r3 = λ(-1/√2 - i/√2), r4 = λ(1/√2 - i/√2).
特解 y = -F/K
通解 y = C1e^(r1x) + C2e^(r2x) + C3e^(r3x) + C4e^(r4x) - F/k
得 r = λ[cos(π+2kπ)/4 + isin(π+2kπ)/4], k = 0, 1, 2, 3.
r1 = λ(1/√2 + i/√2), r2 = λ(-1/√2 + i/√2),
r3 = λ(-1/√2 - i/√2), r4 = λ(1/√2 - i/√2).
特解 y = -F/K
通解 y = C1e^(r1x) + C2e^(r2x) + C3e^(r3x) + C4e^(r4x) - F/k
展开全部
解:微分方程为EIy^(4)+ky=-F,化为y^(4)+
ky/EI=-F/EI,设k/EI=p,-F/EI=q;再设(a+bi)^4=p,有a^4-6a²b²+b^4+(4a³b-4ab³)i=p;a^4-6a²b²+b^4=p,4a³b-4ab³=0;当p>0时,a=±p^¼或±p^¼i,b=0;当p<0时,a=±(-p)^¼/√2,b=±(-p)^¼/√2;方程的通解为y=Ae^[(p^¼)x]+Be^[-(p^¼)x]+Csin(xp^¼)+Dcos(xp^¼)+q (p>0)或y=(e[(p^¼)x]+e^[-(p^¼)x])[Psin(xp^¼)+Qcos(xp^¼)]+q(A、B、C、D、P、Q为任意常数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询