
如图,在△ABC中,BD、CE是高,M,N分别是BC、DE的中点,求证:MN⊥DE
展开全部
连结MD,ME.
因为 BD是高,
所以 BC是直角三角形BCD的斜边,
因为 M是BC的中点,
所以 MD=BC/2,
同理 ME=BC/2,
所以 MD=ME,三角形MDE是等腰三角形,
因为 N是DE的中点,
所以 MN垂直于DE.(等腰三角形三线合一定理)
因为 BD是高,
所以 BC是直角三角形BCD的斜边,
因为 M是BC的中点,
所以 MD=BC/2,
同理 ME=BC/2,
所以 MD=ME,三角形MDE是等腰三角形,
因为 N是DE的中点,
所以 MN垂直于DE.(等腰三角形三线合一定理)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2025-02-26 广告
公司具有国际互认的第三方检验检测资质,为客户提供科学、公正、权威、及时的检验检测报告.一家专注包装科研与检验检测的第三方检测机构,华南包装技术在第三方检测细分领域(包装)的专注与贡献,在业界有口皆碑。...
点击进入详情页
本回答由华南检测机构提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询