请问√(1-x^2)的不定积分是多少?

 我来答
sjh5551
高粉答主

2022-08-15 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:7737万
展开全部
I = ∫√(1-x^2)dx = x√(1-x^2) - ∫xd√(1-x^2)
= x√(1-x^2) - ∫[-x^2/√(1-x^2)]dx
= x√(1-x^2) - ∫[(1-x^2-1)/√(1-x^2)]dx
= x√(1-x^2) - I +∫[1/√(1-x^2)]dx
= x√(1-x^2) - I + arcsinx
解得 I = (x/2)√(1-x^2) + (1/2)arcsinx + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
热爱生活的Tong
高能答主

2022-07-30 · 有什么不懂的尽管问我
知道小有建树答主
回答量:812
采纳率:100%
帮助的人:13.2万
展开全部

√(1-x^2)的不定积分为 (1/2)[arcsinx + x√(1 - x^2)] + C 。

 √(1-x^2)的不定积分的计算方法为:∫ √(1 - x^2) dx = ∫ √(1 - sin^2θ)(cosθ dθ) = ∫ cosθ^2 dθ= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + C= (arcsinx)/2 + (sinθcosθ)/2 + C= (arcsinx)/2 + (x√(1 - x^2))/2 + C= (1/2)[arcsinx + x√(1 - x^2)] + C 。


可用分部积分法:

∫√(1+x²)dx。

=x√(1+x²)-∫[x²/√(1+x²)]。

=x√(1+x²)-∫[(1+x²-1)/√(1+x²)]dx。

=x√(1+x²)-∫√(1+x²)dx+∫[1/√(1+x²)]。

移项得:

∫√(1+x²)dx。

=(x/2)√(1+x²)+(1/2)∫[1/√(1+x²)]dx。

=(x/2)√(1+x²)+(1/2)ln|x+√(1+x²)|+C。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式