设向量组a1,a2,a3,线性无关.证明:向量组a1+a2+a3,a2+a3,a3也线性无关?
展开全部
假设a1+a2+a3,a2+a3,a3线性相关,
则k1(a1+a2+a3)+k2(a2+a3)+k3a3=0其中k1、k2、k3不全为0.
化简成k1a1+(k1+k2)a2+(k1+k2+k3)a3=0
由于向量组a1,a2,a3,线性无关.
所以k1=0、k1+k2=0、k1+k2+k3=0
则k1=0、k2=0、k3=0
与上述k1、k2、k3不全为0矛盾.
所以向量组a1+a2+a3,a2+a3,a3也线性无关,5,
则k1(a1+a2+a3)+k2(a2+a3)+k3a3=0其中k1、k2、k3不全为0.
化简成k1a1+(k1+k2)a2+(k1+k2+k3)a3=0
由于向量组a1,a2,a3,线性无关.
所以k1=0、k1+k2=0、k1+k2+k3=0
则k1=0、k2=0、k3=0
与上述k1、k2、k3不全为0矛盾.
所以向量组a1+a2+a3,a2+a3,a3也线性无关,5,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询