行列式如何展开?
展开全部
三阶行列式可用对角线法则:D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。
|a11 a12 a13|=a11a22a33-a11a23a32+a12a23a31-a12a21a33+a13a32a21-a13a22a31,a21 a22 a23。
a31 a32 a33,=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31。
a1*(a1的余子式):
某个数的余子式是指删去那个数所在的行和列后剩下的行列式。
行列式的每一项要求:不同行不同列的数字相乘如选了a1则与其相乘的数只能在2,3行2,3列中找,(即在 b2 b3 c2c3中找)。
而a1(b2·c3-b3·c2) - a2(b1c3-b3·c1) + a3(b1·c2-b2·c1)是用了行列式展开运算:即行列式等于它第一行的每一个数乘以它的余子式,或等于第一列的每一个数乘以它的余子式,然后按照 + - + - + -......的规律给每一项添加符号之后再做求和计算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询