若椭圆mx^2+ny^2=1与直线x+y-1=0交于A,B两点,过原点与线段AB中点的直线斜率为√2/2,求n/m的值
1个回答
展开全部
设椭圆mx^2+ny^2=1与直线x+y-1=0交于A(x1,y1),B(x2,y2)两点
A,B点在椭圆上:
mx1^2+ny1^2=1
mx2^2+ny2^2=1
两式相减: m(x1-x2)(x1+x2)+n(y1-y2)(y1+y2)=0
=> -n(y1-y2)/[m(x1-x2)]=(x1+x2)/(y1+y2)
A,B也在直线上,所以:(y1-y2)/(x1-x2)=直线斜率=-1
=> n/m=(x1+x2)/(y1+y2)
令A,B的中点为(x0,y0)=> x0=(x1+x2)/2 ; y0=(y1+y2)/2
=> n/m=x0/y0 = (x0-0)/(y0-0)中点到原点直线的斜率的倒数
=> n/m = √2
A,B点在椭圆上:
mx1^2+ny1^2=1
mx2^2+ny2^2=1
两式相减: m(x1-x2)(x1+x2)+n(y1-y2)(y1+y2)=0
=> -n(y1-y2)/[m(x1-x2)]=(x1+x2)/(y1+y2)
A,B也在直线上,所以:(y1-y2)/(x1-x2)=直线斜率=-1
=> n/m=(x1+x2)/(y1+y2)
令A,B的中点为(x0,y0)=> x0=(x1+x2)/2 ; y0=(y1+y2)/2
=> n/m=x0/y0 = (x0-0)/(y0-0)中点到原点直线的斜率的倒数
=> n/m = √2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询