如何证明:1平方+2平方+3平方+……+n平方=n(n+1)(2n+1)/6

如何证明:1平方+2平方+3平方+……+n平方=n(n+1)(2n+1)/6请给出详细证明!(另外,请不要用数学归纳法和待定系数法来求证)因为我想知道人们最初是怎么把这个... 如何证明:1平方+2平方+3平方+……+n平方=n(n+1)(2n+1)/6
请给出详细证明!
(另外,请不要用 数学归纳法和待定系数法来求证)
因为我想知道人们最初是怎么把这个求和公式的结果推导出来的。
展开
贾志强讲数学
2013-04-02 · 高中数学、高考数学在线辅导
贾志强讲数学
采纳数:148 获赞数:788

向TA提问 私信TA
展开全部
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
大头大脖子大肚子大腿大脚板
2008-12-05 · TA获得超过891个赞
知道小有建树答主
回答量:259
采纳率:0%
帮助的人:137万
展开全部
1^2+2^2+3^2+……+n^2
=(1^2+1)+(2^2+2)+(3^2+3)+……+(n^2+n)-n(n+1)/2
=2[(2*1)/2+(3*2)/2+(4*3)/2+……+n*(n+1)/2]-n(n+1)/2
=2(C22+C32+C42+……+C(n+1)2)-n(n+1)/2,(C22表式C2选2,C32表式C3选2……)
=2(C33+C32+C42+……+C(n+1)2))-n(n+1)/2
=2C(n+2)3)-n(n+1)/2,(C33+C32=C43,C43+C42=C53……)
=(n+1)n(n-1)/3-n(n+1)/2
=[2(n+2)(n+1)n-3n(n+1)]/6
=n(n+1)(2n+1)/6
此方法用到高三组合数公式
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
kjessicak
2008-12-05 · 贡献了超过147个回答
知道答主
回答量:147
采纳率:0%
帮助的人:36.2万
展开全部
我们知道 (k + 1)^3 - k^3 = 3k^2 + 3k + 1

(1 + 1)^3 - 1^2 = 3*1^2 + 3*1 + 1
(2 + 1)^3 - 2^3 = 3*2^2 + 3*2 + 1
(3 + 1)^3 - 3^3 = 3*3^2 + 3*3 + 1
.............
(n + 1)^3 - n^3 = 3*n^2 + 3*n + 1

以上相加得到:
(n + 1)^3 - 1 = 3*Sn + 3*n(n + 1)/2 + n ... 此处引用:1 + 2 + 3 + .... + n = n(n + 1)/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
冀D苏D
2008-12-05 · TA获得超过1.5万个赞
知道大有可为答主
回答量:2109
采纳率:77%
帮助的人:1191万
展开全部
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n

2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n

各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)

n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)

n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1

n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2

3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)

1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
524011687
2008-12-05
知道答主
回答量:47
采纳率:0%
帮助的人:16.5万
展开全部
1 + 1)^3 - 1^2 = 3*1^2 + 3*1 + 1
(2 + 1)^3 - 2^3 = 3*2^2 + 3*2 + 1
(3 + 1)^3 - 3^3 = 3*3^2 + 3*3 + 1
.............
(n + 1)^3 - n^3 = 3*n^2 + 3*n + 1

以上相加得到:
(n + 1)^3 - 1 = 3*Sn + 3*n(n + 1)/2 + n ...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式