如图,正方形ABCD中AC、BD相交于O,E、F分别为BC、OD的中点,求证AF垂直于EF

拜托、快点、我会加分哦~... 拜托、快点、我会加分哦~ 展开
艳阳在高照
2008-12-13 · TA获得超过5.3万个赞
知道大有可为答主
回答量:9200
采纳率:54%
帮助的人:5841万
展开全部
设正方形的边长为4a
过F作FG⊥BC于G,连接OE、AE,延长GF交AD于H点
OA=AB/√2=4a/√2=2√2a,OF=OA/2=√2a
则AF^2=OA^2+OF^2=(2√2a)^2+(√2a)^2=10a^2
很明显三角形DFH是等腰直角三角形,DH=HF
所以:DH^2+HF^2=2DH^2=DF^2,可得出DH=DF/√2=√2a/√2=a
可知:FG=GH-FH=4a-a=3a,EG=CE/2=BC/4=a
则EF^2=EG^2+FG^2=a^2+(3a)^2=10a^2
而AE^2=AB^2+BE^2=(4a)^2+(2a)^2=20a^2
因为 AF^2+EF^2=AE^2
所以 AF⊥EF
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式