已知函数f(x)=ax+1/a(1-x)(a>0),且f(x)在[0,1]上的最小值为g(a),求

g(a)的最大值... g(a)的最大值 展开
 我来答
Harvey2ll
2013-12-08 · TA获得超过11.7万个赞
知道小有建树答主
回答量:1.2万
采纳率:96%
帮助的人:645万
展开全部
由于 f(x)=ax+(1/a) (1-x)=[(a^2-1)/a]x+1/a

故,下对x的系数(a^2-1)/a进行讨论:

当系数(a^2-1)/a=0时,即 a=1时:
f(x)=1/a,则f(x)的最小值=f(x)的最大值=g(a)=1/a=1
当系数(a^2-1)/a>0时,即a>1时:
f(x)为单调递增的一次函数,
则f(x)的最小值=f(0)=1/a=g(a)
f(x)的最大值=f(1)=a
由于g(a)=1/a,为单调递减的双曲函数,
当a趋近于0时,g(a)无限趋近于正无穷,故g(a)无最大值
当系数(a^2-1)/a<0时,即0<a<1时:
f(x)为单调递减的一次函数,
则f(x)的最小值=f(1)=a=g(a)
f(x)的最大值=f(0)=1/a
而g(a)=a ,为单调递增的一次函数,
0<a<1,a无最大值 故g(a)无最大值!
综上所述:
当0<a<1时,f(x)的最小值=g(a)=1/a,g(a)无最大值;
当a=1 时,f(x)的最小值=g(a)=1/a=1
当a>1 时,f(x)的最小值=g(a)=a,g(a)无最大值;

如果答案对您有帮助,真诚希望您的采纳和好评哦!!
祝:学习进步哦!!
*^_^* *^_^*
caishuaigeda
2017-06-23 · TA获得超过785个赞
知道答主
回答量:113
采纳率:100%
帮助的人:9万
展开全部
f(x)=ax+(1-x)/a=(a-1/a)x+1/a
当a>1时,a-1/a>0,f(x)在[0,1]是增函数
f(x)最小为1/a
当a=1时,f(x)=1
当0<a<1时,a-1/a<0,f(x)在[0,1]是减函数
f(x)最小值为a
综上所述:
g(a)=1/a a>1
=1 a=1
=a 0<a<1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式