f(x)是定义在r上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解
f(x)是定义在r上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数最小值是答案是5个我认为是七个...
f(x)是定义在r上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数最小值是 答案是5个 我认为是七个
展开
4个回答
展开全部
支持楼主,七个。
f(x)是奇函数,则,f(x)=-f(-x),得,f(0)=-f(-0),即,f(0)=0
f(x)是周期为3的函数,则,f(x+3)=f(x)=f(x-3)
因为,f(0)=0,所以,f(-6)=f(-3)=f(0)=f(3)=f(6)=0
又因为,f(2)=0,所以,f(-4)=f(-1)=f(2)=f(5)=f(8)=0
又因为,f(-1)=-f(1)=0,所以,f(1)=0
所以,f(-2)=f(1)=f(4)=f(7)=0
考察一个周期[0,3]的函数情况,
当0=<x<=1时,-1=<-x<=0,2=<-x+3<=3,因为,f(x)=-f(-x),所以,f(x)=-f(-x+3)。
即,f(x)在[0,1]上的图像与在[2,3]上的图像,关于x轴上某点成中心对称。
对称中心坐标为(0,(x+(-x+3))/2),即,(0,1.5),所以,f(1.5)=0
所以,f(-1.5)=f(1.5)=f(4.5)=f(7.5)=0
综上,在区间(0,6)上最少的零点个数为7个。(即,方程f(x)=0在区间(0,6)内解的个数最小值是7)
f(1)=f(1.5)=f(2)=f(3)=f(4)=f(4.5)=f(5)=0
如果,问的是整数解的个数,则最小值为5。
还有一种情况,定义域不包括x=1.5+3k,k属于整数(可由函数表达式决定定义域的话)。则最小值也为5。
f(x)是奇函数,则,f(x)=-f(-x),得,f(0)=-f(-0),即,f(0)=0
f(x)是周期为3的函数,则,f(x+3)=f(x)=f(x-3)
因为,f(0)=0,所以,f(-6)=f(-3)=f(0)=f(3)=f(6)=0
又因为,f(2)=0,所以,f(-4)=f(-1)=f(2)=f(5)=f(8)=0
又因为,f(-1)=-f(1)=0,所以,f(1)=0
所以,f(-2)=f(1)=f(4)=f(7)=0
考察一个周期[0,3]的函数情况,
当0=<x<=1时,-1=<-x<=0,2=<-x+3<=3,因为,f(x)=-f(-x),所以,f(x)=-f(-x+3)。
即,f(x)在[0,1]上的图像与在[2,3]上的图像,关于x轴上某点成中心对称。
对称中心坐标为(0,(x+(-x+3))/2),即,(0,1.5),所以,f(1.5)=0
所以,f(-1.5)=f(1.5)=f(4.5)=f(7.5)=0
综上,在区间(0,6)上最少的零点个数为7个。(即,方程f(x)=0在区间(0,6)内解的个数最小值是7)
f(1)=f(1.5)=f(2)=f(3)=f(4)=f(4.5)=f(5)=0
如果,问的是整数解的个数,则最小值为5。
还有一种情况,定义域不包括x=1.5+3k,k属于整数(可由函数表达式决定定义域的话)。则最小值也为5。
展开全部
f(x)是定义在r上的以3为周期的奇函数
故f(0)=0
所以f(3)=0
f(2)=0 故f(-1)=f(5)=0
所以f(1)=f(4)=0
所以当x=1,2,3,4,5
不包括0和6
故f(0)=0
所以f(3)=0
f(2)=0 故f(-1)=f(5)=0
所以f(1)=f(4)=0
所以当x=1,2,3,4,5
不包括0和6
追问
1.5 4.5也得是
追答
你这到底 “ 个数最小值是” 是什么意思
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询