微分方程y'=(y平方-2xy-x平方)/(y平方+2xy-x平方),y(1)=1
1个回答
展开全部
解:∵令y=xt,则y'=xt'+t
代入原方程,化简得 (1-2t-t²)dt/(1+t+t²+t³)=dx/x
==> [1/(t+1)-2t/(t²+1)]dt=dx/x
==> ln│t+1│-ln│t²+1│=ln│x│+ln│C│ (C是积分常数)
==> (t+1)/(t²+1)=Cx
==>[(y/x)+1]/[(y/x)²+1]=Cx
==>(x+y)/(x²+y²)=Cx
∴ 原方程的通解是 x+y=C(x²+y²)
∵y(1)=1
∴代入通解,得C=1
故 原方程在初始条件y(1)=1下的特解是x+y=(x²+y²)。
代入原方程,化简得 (1-2t-t²)dt/(1+t+t²+t³)=dx/x
==> [1/(t+1)-2t/(t²+1)]dt=dx/x
==> ln│t+1│-ln│t²+1│=ln│x│+ln│C│ (C是积分常数)
==> (t+1)/(t²+1)=Cx
==>[(y/x)+1]/[(y/x)²+1]=Cx
==>(x+y)/(x²+y²)=Cx
∴ 原方程的通解是 x+y=C(x²+y²)
∵y(1)=1
∴代入通解,得C=1
故 原方程在初始条件y(1)=1下的特解是x+y=(x²+y²)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询