已知过点D(-2,0)的直线L与椭圆x^2/2+y^2=1交于不同两点A,B,点M是弦AB的中点
已知过点D(-2,0)的直线L与椭圆x^2/2+y^2=1交于不同两点A,B,点M是弦AB的中点(1)若向量OP=OA+OB,求点P的轨迹方程(2)求|向量MD|/|向量...
已知过点D(-2,0)的直线L与椭圆x^2/2+y^2=1交于不同两点A,B,点M是弦AB的中点
(1)若向量OP=OA+OB,求点P的轨迹方程
(2)求|向量MD|/|向量MA|的取值范围
要过程谢谢 展开
(1)若向量OP=OA+OB,求点P的轨迹方程
(2)求|向量MD|/|向量MA|的取值范围
要过程谢谢 展开
展开全部
由于步骤较多,有些代入计算的步骤我就大致说过去了,不再详述,见谅!
1.设A(x1,y1),B(x2,y2),而原点O(0,0),∴向量OA={x1,y1},向量OB={x2,y2}
∴向量OP=向量OA+向量OB={x1+x2,y1+y2},故P点坐标为(x1+x2,y1+y2) ①
过D(-2,0)的直线AB,可设其斜率为k,则可将AB的方程表示成:y=k(x+2)
联立椭圆x^/2 +y^=1与直线AB的方程,消去y,可得到关于x的一元二次方程为:
(2k^+1)x^+8k^x+(8k^-2)=0
由于椭圆与AB相交于不同的两点A,B,故此方程的△>0,且A,B两点横坐标x1,x2分别为此方程的两个不等式实根,且有:
x1+x2=-8k^/(2k^+1) ②
x1*x2=(8k^-2)/(2k^+1) ③
而△=(8k^)^-4*(2k^+1)*(8k^-2)>0
<=> |k|<√2/2 ④
A(x1,y1),B(x2,y2)都在AB:y=k(x+2)上,可以用x1,x2分别表示y1,y2:
y1=k(x1+2),y2=k(x2+2)
<=>y1+y2=k(x1+x2)+4k
将②代入:
y1+y2=4k/(2k^+1) ⑤
设P点坐标为(x,y),根据①,②,⑤式,可得:
x=x1+x2=-8k^/(2k^+1) ⑥
y=y1+y2=4k/(2k^+1) ⑦
只要求出关于x,y之间的关系式,就可得到P点的轨迹方程!
⑥比上⑦式,化简可得:
k=-x/2y ⑧
将其带回到式⑦,化简可得到只含有x,y的关系式:
y=-4xy/(x^+2y^)
显然,P点的纵坐标y不可能恒为0,故两边同时约去y,最终化简可得:
(x+2)^/4 + y^/2 =1 ⑨
注意:此椭圆方程仅为P轨迹的一部分,原因见下:
由⑧代入式④:
|x/2y|<√2/2
观察刚得出的椭圆⑨,可发现,其是一个中心为(-2,0),关于x=-2,y=0两条直线对称,长轴长为4,短轴长为2√2,与x轴交于(-4,0),(0,0),与x=-2交于(0,√2/2),(0,√2/2)的椭圆,是由中心为原点的基本椭圆左移两个单位形成的,很容易判断,其上任一点的横坐标x≤0,故|x|=-x,上述不等式继续变形:
-x/|y|<√2
<=>|y|>-√2x/2
<=>y>-√2x/2或y<√2x/2 (x≤0)
此为椭圆⑨中,实际能够取到的真正部分!
联立y=-√2x/2与椭圆⑨,可得到x=-2;联立y=√2x/2与椭圆⑨,同样可得到x=-2
结合图像,可以得出P点的真正轨迹为:
椭圆(x+2)^/4 + y^/2 =1 在 -2<x≤0的部分!
(我想贴个图上来,能够更明确,但是估计很难显示,请楼主见谅,自己画图表示一下,此椭圆的形状我已描述,满足题意的部分分别是位于直线y=-√2x/2 (x≤0)上方的部分,以及位于直线y=√2x/2 (x≤0)下方的部分,(两部分都不包括直线与椭圆的交点!) 这两部分显然关于x轴对称,相对应的代数形式就是刚刚描述过的椭圆在(-2,0]上的部分!)
2.向量MD,向量MA的模长,很明显就是线段|MD|,|MA|的长度 (这是模长的定义!),于是所求可转化为:求t=|MD|/|MA|的取值范围,楼主画出图像,很明显可以看出,由于M为AB中点,M,D,A三点均在直线AB上,故,|MD|与|MA|之比等于其在x轴上的投影之比,即:
t=|MD|/|MA|=|xD-xM|/|xA-xM| ⑩
由A(x1,y1),B(x2,y2),可表示其中点M的横坐标xM=(x1+x2)/2
而xD=-2,xA=x1
将以上几个表达式代入⑩,化简可得:
t=|x1+x2 +4|/|x1-x2|
只要求出t^的取值范围即可:
t^=(x1+x2 +4)^/(x1-x2)^=(x1+x2 +4)^/[(x1+x2)^-4x1*x2]
将②,③两式代入上式,并化简,最后可得:
t^=2/(1-2k^)
根据④式,k的取值范围是0≤|k|<√2/2
<=>t^=2/(1-2k^) ∈(0,2]
<=>t∈(0,√2]
即原式所要求的向量MD与向量MA的模长之比,取值范围是(0,√2]
1.设A(x1,y1),B(x2,y2),而原点O(0,0),∴向量OA={x1,y1},向量OB={x2,y2}
∴向量OP=向量OA+向量OB={x1+x2,y1+y2},故P点坐标为(x1+x2,y1+y2) ①
过D(-2,0)的直线AB,可设其斜率为k,则可将AB的方程表示成:y=k(x+2)
联立椭圆x^/2 +y^=1与直线AB的方程,消去y,可得到关于x的一元二次方程为:
(2k^+1)x^+8k^x+(8k^-2)=0
由于椭圆与AB相交于不同的两点A,B,故此方程的△>0,且A,B两点横坐标x1,x2分别为此方程的两个不等式实根,且有:
x1+x2=-8k^/(2k^+1) ②
x1*x2=(8k^-2)/(2k^+1) ③
而△=(8k^)^-4*(2k^+1)*(8k^-2)>0
<=> |k|<√2/2 ④
A(x1,y1),B(x2,y2)都在AB:y=k(x+2)上,可以用x1,x2分别表示y1,y2:
y1=k(x1+2),y2=k(x2+2)
<=>y1+y2=k(x1+x2)+4k
将②代入:
y1+y2=4k/(2k^+1) ⑤
设P点坐标为(x,y),根据①,②,⑤式,可得:
x=x1+x2=-8k^/(2k^+1) ⑥
y=y1+y2=4k/(2k^+1) ⑦
只要求出关于x,y之间的关系式,就可得到P点的轨迹方程!
⑥比上⑦式,化简可得:
k=-x/2y ⑧
将其带回到式⑦,化简可得到只含有x,y的关系式:
y=-4xy/(x^+2y^)
显然,P点的纵坐标y不可能恒为0,故两边同时约去y,最终化简可得:
(x+2)^/4 + y^/2 =1 ⑨
注意:此椭圆方程仅为P轨迹的一部分,原因见下:
由⑧代入式④:
|x/2y|<√2/2
观察刚得出的椭圆⑨,可发现,其是一个中心为(-2,0),关于x=-2,y=0两条直线对称,长轴长为4,短轴长为2√2,与x轴交于(-4,0),(0,0),与x=-2交于(0,√2/2),(0,√2/2)的椭圆,是由中心为原点的基本椭圆左移两个单位形成的,很容易判断,其上任一点的横坐标x≤0,故|x|=-x,上述不等式继续变形:
-x/|y|<√2
<=>|y|>-√2x/2
<=>y>-√2x/2或y<√2x/2 (x≤0)
此为椭圆⑨中,实际能够取到的真正部分!
联立y=-√2x/2与椭圆⑨,可得到x=-2;联立y=√2x/2与椭圆⑨,同样可得到x=-2
结合图像,可以得出P点的真正轨迹为:
椭圆(x+2)^/4 + y^/2 =1 在 -2<x≤0的部分!
(我想贴个图上来,能够更明确,但是估计很难显示,请楼主见谅,自己画图表示一下,此椭圆的形状我已描述,满足题意的部分分别是位于直线y=-√2x/2 (x≤0)上方的部分,以及位于直线y=√2x/2 (x≤0)下方的部分,(两部分都不包括直线与椭圆的交点!) 这两部分显然关于x轴对称,相对应的代数形式就是刚刚描述过的椭圆在(-2,0]上的部分!)
2.向量MD,向量MA的模长,很明显就是线段|MD|,|MA|的长度 (这是模长的定义!),于是所求可转化为:求t=|MD|/|MA|的取值范围,楼主画出图像,很明显可以看出,由于M为AB中点,M,D,A三点均在直线AB上,故,|MD|与|MA|之比等于其在x轴上的投影之比,即:
t=|MD|/|MA|=|xD-xM|/|xA-xM| ⑩
由A(x1,y1),B(x2,y2),可表示其中点M的横坐标xM=(x1+x2)/2
而xD=-2,xA=x1
将以上几个表达式代入⑩,化简可得:
t=|x1+x2 +4|/|x1-x2|
只要求出t^的取值范围即可:
t^=(x1+x2 +4)^/(x1-x2)^=(x1+x2 +4)^/[(x1+x2)^-4x1*x2]
将②,③两式代入上式,并化简,最后可得:
t^=2/(1-2k^)
根据④式,k的取值范围是0≤|k|<√2/2
<=>t^=2/(1-2k^) ∈(0,2]
<=>t∈(0,√2]
即原式所要求的向量MD与向量MA的模长之比,取值范围是(0,√2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询