两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线

两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(说明:结论中... 两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC, (1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母)。(2)证明:DC⊥BE。 展开
 我来答
登哥32176
2014-09-21 · 超过63用户采纳过TA的回答
知道答主
回答量:107
采纳率:0%
帮助的人:60.9万
展开全部
(1)△ABE≌△ACD;(2)根据等腰直角三角形的性质可得∠B=∠ACB=45°,由(1)得△ABE≌△ACD,则可得∠B=∠ACD=45°,即可得到∠BCD=∠ACB+∠ACD=90°,从而证得结论.


试题分析:(1)根据等腰直角三角形的性质可得AB=AC,AE=AD,∠BAC=∠DAE=90°,即可得到∠BAE=∠CAD,再根据“SAS”即可证得△ABE≌△ACD;
(2)根据等腰直角三角形的性质可得∠B=∠ACB=45°,由(1)得△ABE≌△ACD,则可得∠B=∠ACD=45°,即可得到∠BCD=∠ACB+∠ACD=90°,从而证得结论.
(1)△ABE≌△ACD
证明:∵△ABC和△ADE都是等腰直角三角形
∴AB=AC,AE=AD,∠BAC=∠DAE=90°
∴∠BAE=∠CAD
∴△ABE≌△ACD(SAS);
(2)∵△ABC是等腰直角三角形
∴∠B=∠ACB=45°
由(1)得△ABE≌△ACD
∴∠B=∠ACD=45°
∴∠BCD=∠ACB+∠ACD=90°
∴DC⊥BE.
点评:全等三角形的判定与性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式