两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线
两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(说明:结论中...
两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC, (1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母)。(2)证明:DC⊥BE。
展开
1个回答
展开全部
(1)△ABE≌△ACD;(2)根据等腰直角三角形的性质可得∠B=∠ACB=45°,由(1)得△ABE≌△ACD,则可得∠B=∠ACD=45°,即可得到∠BCD=∠ACB+∠ACD=90°,从而证得结论. |
试题分析:(1)根据等腰直角三角形的性质可得AB=AC,AE=AD,∠BAC=∠DAE=90°,即可得到∠BAE=∠CAD,再根据“SAS”即可证得△ABE≌△ACD; (2)根据等腰直角三角形的性质可得∠B=∠ACB=45°,由(1)得△ABE≌△ACD,则可得∠B=∠ACD=45°,即可得到∠BCD=∠ACB+∠ACD=90°,从而证得结论. (1)△ABE≌△ACD 证明:∵△ABC和△ADE都是等腰直角三角形 ∴AB=AC,AE=AD,∠BAC=∠DAE=90° ∴∠BAE=∠CAD ∴△ABE≌△ACD(SAS); (2)∵△ABC是等腰直角三角形 ∴∠B=∠ACB=45° 由(1)得△ABE≌△ACD ∴∠B=∠ACD=45° ∴∠BCD=∠ACB+∠ACD=90° ∴DC⊥BE. 点评:全等三角形的判定与性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询