已知定义在区间(0,+∞)上的函数f(x)满足:对?x1,x2∈(0,+∞)恒有f(x1x2)=f(x1)?f(x2),且当x>

已知定义在区间(0,+∞)上的函数f(x)满足:对?x1,x2∈(0,+∞)恒有f(x1x2)=f(x1)?f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;... 已知定义在区间(0,+∞)上的函数f(x)满足:对?x1,x2∈(0,+∞)恒有f(x1x2)=f(x1)?f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)证明:函数f(x)在区间(0,+∞)上为单调递减函数;(3)若f(3)=-1,(ⅰ)求f(9)的值;(ⅱ)解不等式:f(3x)<-2. 展开
 我来答
游希先生丶97I
2014-10-12 · 超过69用户采纳过TA的回答
知道答主
回答量:115
采纳率:0%
帮助的人:158万
展开全部
(1)由题意知,对定义域内的任意x1,x2都有f(
x1
x2
)=f(x1)?f(x2)

令x1=x2=1,代入上式解得f(1)=0,
(2)设x2>x1>0,则 f(x2)?f(x1)=f(
x2
x1
)

∵x2>x1>0,∴
x2
x1
>1
,∴f(
x2
x1
)
<0,
即f(x2)-f(x1)<0,∴f(x2)<f(x1
∴f(x)在(0,+∞)上是减函数.
(3)∵f(3)=-1,∴f(9)=f(3)+f(3)=-2,
∴不等式f(3x)<-2可化为f(3x)<f(9),
又∵函数在(0,+∞)上是减函数,∴3x>9,
即3x>32,解得:x>2,
即不等式的解集为 (2,+∞).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式