在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立坐标系.已知点P的极坐标(2,π2),曲线

在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立坐标系.已知点P的极坐标(2,π2),曲线C的极坐标方程:ρ=-4cosθ,过点P的直线l交曲线C于M、N... 在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立坐标系.已知点P的极坐标(2,π2),曲线C的极坐标方程:ρ=-4cosθ,过点P的直线l交曲线C于M、N两点.(Ⅰ)若在直角坐标系下直线l的倾斜角为α,求直线l的参数方程和曲线C的普通方程;(Ⅱ)求|PM|+|PN|的最大值及相应的α值. 展开
 我来答
瞢暗
推荐于2016-04-22
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
(Ⅰ)若在直角坐标系下直线l的倾斜角为α,把点P的极坐标(2,
π
2
)化为直角坐标为(0,2),
故直线l的参数方程为
x=0+tcosα
y=2+tsinα
 (t为参数).
曲线C的极坐标方程:ρ=-4cosθ,即 ρ2=-4ρcosθ,化为直角坐标方程为 (x+2)2+y2=4.
(Ⅱ)由(Ⅰ)可得,曲线C表示以C(-2,0)为圆心、半径等于2的圆.
把直线l的参数方程代入曲线C的方程化简可得 t2+4(cosα+sinα)t+4=0,∴t1+t2=4(cosα+sinα),t1?t2=4.
|PM|+|PN|=|t1|+|t2|=|t1+t2|=4
2
|sin(α+
π
4
)|.
再根据α∈[0,π),可得当α=
π
4
时,|PM|+|PN|的最大值为4
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式