![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
1个回答
展开全部
(1)
1/a+1/b=ab
→a+b=a²b²≤[(a+b)/2]^4
→(a+b)[(a+b)³-16]≥0
∴(a+b)³≥16.
依权方和不等式得
a³+b³
=a³/1²+b³/1²
≥(a+b)³/(1+1)²
=16/4
=4,
故a³=b³=2时,
所求最小值为:4.
(2)
对不定方程a+3b=6观察知,
a=3,b=1是方程一组特解,
故原不定方程整数通解为
a=3-3t,b=1+t.
检验:(3-3t)+3(1+t)=6。
1/a+1/b=ab
→a+b=a²b²≤[(a+b)/2]^4
→(a+b)[(a+b)³-16]≥0
∴(a+b)³≥16.
依权方和不等式得
a³+b³
=a³/1²+b³/1²
≥(a+b)³/(1+1)²
=16/4
=4,
故a³=b³=2时,
所求最小值为:4.
(2)
对不定方程a+3b=6观察知,
a=3,b=1是方程一组特解,
故原不定方程整数通解为
a=3-3t,b=1+t.
检验:(3-3t)+3(1+t)=6。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询