5个回答
展开全部
可去间断点的定义是:函数的左右极限都存在,但不等于函数在该点的函数值;
对第一个函数,它的左右极限都是0,(因为当X趋于0的时候,极限=0乘以有界函数),但并不等于y在X=0处的函数值,因为函数在此处无定义。
对于第二个函数,同样是当X趋于0的时候左右极限都是0,但题目补充了函数在此处的定义,满足了连续的定义。
第一次回答问题,望采纳~
对第一个函数,它的左右极限都是0,(因为当X趋于0的时候,极限=0乘以有界函数),但并不等于y在X=0处的函数值,因为函数在此处无定义。
对于第二个函数,同样是当X趋于0的时候左右极限都是0,但题目补充了函数在此处的定义,满足了连续的定义。
第一次回答问题,望采纳~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x-)=f(x+)且不等于f(Xo)(或f(Xo)无定义),则称Xo为f(x)的可去间断点,该函数在x=0处无定义,这个没问题吧,然后左右极限都是0,所以是可去间断点。下面那个确实是连续的,左右极限都存在且等于0,然后在x=0处函数值也等于0,这不就连续了吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可去间断点就是左极限=右极限,但是不等于该点的函数值,或者在该点没有定义。
当重新定义该点的值,使得左极限=右极限=该点的函数值,使新函数成为连续函数,
连续当然就没有断点。
当重新定义该点的值,使得左极限=右极限=该点的函数值,使新函数成为连续函数,
连续当然就没有断点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2015-09-17
展开全部
1、根据函数定义要求x不等于0,
2、根据可去间断点定义,在x=0邻域内 f(0-)=f(0+),知是可去间断点;
3、第二个函数满足y(0)=y(0-)=y(0+),函数处处连续 无间断点
2、根据可去间断点定义,在x=0邻域内 f(0-)=f(0+),知是可去间断点;
3、第二个函数满足y(0)=y(0-)=y(0+),函数处处连续 无间断点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |