配方法的定义是什么 还有公式法的

恩... 展开
 我来答
百度网友4327fcbb9b
2015-05-29 · 知道合伙人教育行家
百度网友4327fcbb9b
知道合伙人教育行家
采纳数:26425 获赞数:292066
从师范学校毕业后一直在现在单位工作

向TA提问 私信TA
展开全部

配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。

把各项系数直接带入求根公式,可避免配方过程而直接得出根,这种解一元二次方程的方法叫做公式法。

公式法中的求根公式是由配方法推导得到的。

一元二次方程一般形式:

运用配方法可以得出此一元二次方程的解,即公式法中的求根公式,过程如下:

中华才俊网
推荐于2017-09-04 · TA获得超过3.1万个赞
知道大有可为答主
回答量:3962
采纳率:0%
帮助的人:0
展开全部
配方法 数学一元二次方程中的一种解法(其他两种为公式法和分解法)
具体过程如下:
1.将此一元二次方程化为ax^2+bx+c=0的形式(此一元二次方程满足有实根)
2.将二次项系数化为1
3.将常数项移到等号右侧
4.等号左右两边同时加上一次项系数一半的平方
5.将等号左边的代数式写成完全平方形式
6.左右同时开平方
7.整理即可得到原方程的根
例:解方程2x^2+4=6x
1.2x^2-6x+4=0
2.x^2-3x+2=0
3.x^2-3x=-2
4.x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
5.(x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0)
6.x-1.5=±0.5
7.x1=2
x2=1

定义
解一元二次方程的一种方法,也指套用公式计算某事务。
另外还有配方法、直接开方法与因式分解法。
[编辑本段]步骤
1.化方程为一般式ax^2+bx+c=0;
2.确定判别式,计算b^2-4ac;
3.若b^2-4ac≥0,代入公式x=[-b±√(b^2-4ac)]/2a;
若b^2-4ac<0,该方程在实数域内无解,在虚数域内解为x=[-b±√(4ac-b^2)i]/2a。
[编辑本段]实例
解方程2x^2+4x-2=0。
解:x^2+2x-1=0
A=1 B=2 C=-1
b^2-4ac=2^2-4×1×[-1]=4+4=8
代入公式x=[-b±√(b^2-4ac)]/2a 得x=[-2±√8]/2×1=-1±√2
X1=-1+√2
X2=-1-√2
[编辑本段]注意事项
一定不会出现不能用公式法解一元二次方程的情况。(所谓“一元二次方程万能公式”)
但在能直接开方或者因式分解时最好用直接开方法和分解因式法。
只适用于初中阶段。

http://baike.baidu.com/view/417757.html?wtp=tt

http://baike.baidu.com/view/1339128.html?wtp=tt
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
CALIO5
推荐于2017-09-22 · TA获得超过5596个赞
知道大有可为答主
回答量:1385
采纳率:28%
帮助的人:271万
展开全部
没有具体的定义,有具体的解题步骤
配方法 数学一元二次方程中的一种解法(其他两种为公式法和分解法)
具体过程如下:
1.将此一元二次方程化为ax^2+bx+c=0的形式(此一元二次方程满足有实根)
2.将二次项系数化为1
3.将常数项移到等号右侧
4.等号左右两边同时加上一次项系数一半的平方
5.将等号左边的代数式写成完全平方形式
6.左右同时开平方
7.整理即可得到原方程的根
例:解方程2x^2+4=6x
1.2x^2-6x+4=0
2.x^2-3x+2=0
3.x^2-3x=-2
4.x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
5.(x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0)
6.x-1.5=±0.5
7.x1=2
x2=1
定义
解一元二次方程的一种方法,也指套用公式计算某事务。
另外还有配方法、直接开方法与因式分解法。
[编辑本段]步骤
1.化方程为一般式ax^2+bx+c=0;
2.确定判别式,计算b^2-4ac;
3.若b^2-4ac≥0,代入公式x=[-b±√(b^2-4ac)]/2a;
若b^2-4ac<0,此法无用
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式