为什么二重积分可以算面积
展开全部
为什么二重积分算面积是因为:二重积分的几何意义是当z值为正时的曲顶柱体的体积,微元相当于投影面积。
设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(ξi,ηi),作和lim n→ ∞ (n/i=1 Σ(ξi,ηi)Δδi).如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y)在区域D上的二重积分,记为∫∫f(x,y)dδ,即
∫∫f(x,y)dδ=limλ →0(Σf(ξi,ηi)Δδi)
这时,称f(x,y)在D上可积,其中f(x,y)称被积函数,f(x,y)dδ称为被积表达式,dδ称为面积元素, D称为积分域,∫∫称为二重积分号.
同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
性质1:(积分可加性) 函数和(差)的二重积分等于各函数二重积分的和(差),即:∫∫
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
Dxy:(x-a/2)^2+y^2≤(a/2)^2 ∫∫∫1dv =∫∫dσxy∫(0~(x^2+y^2))*1 dz =∫∫(x^2+y^2)dσxy 转化为极坐标,则 Drθ为:0≤r≤acosθ 积分转化为 ∫∫r^2*r ...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
因为二重积分定义的几何意义就是z值为正时曲顶柱体的体积,微元相当于 投影面积,被积函数相当于高。那么如果里面的被积函数值为1,就说明这个柱体的高被视为很小的定值,它相当于一个平面薄板,这个时候二重积分算的就是这个平面薄板的面积,也相当于它的体积。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
为什么二重积分算面积是因为:二重积分的几何意义是当z值为正时的曲顶柱体的体积,微元相当于投影面积。
设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(ξi,ηi),作和lim
n→
∞
(n/i=1
Σ(ξi,ηi)Δδi).如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y)在区域D上的二重积分,记为∫∫f(x,y)dδ,即
∫∫f(x,y)dδ=limλ
→0(Σf(ξi,ηi)Δδi)
这时,称f(x,y)在D上可积,其中f(x,y)称被积函数,f(x,y)dδ称为被积表达式,dδ称为面积元素,
D称为积分域,∫∫称为二重积分号.
同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
性质1:(积分可加性) 函数和(差)的二重积分等于各函数二重积分的和(差),即:∫∫
设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(ξi,ηi),作和lim
n→
∞
(n/i=1
Σ(ξi,ηi)Δδi).如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y)在区域D上的二重积分,记为∫∫f(x,y)dδ,即
∫∫f(x,y)dδ=limλ
→0(Σf(ξi,ηi)Δδi)
这时,称f(x,y)在D上可积,其中f(x,y)称被积函数,f(x,y)dδ称为被积表达式,dδ称为面积元素,
D称为积分域,∫∫称为二重积分号.
同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
性质1:(积分可加性) 函数和(差)的二重积分等于各函数二重积分的和(差),即:∫∫
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用独吟独赏独步的回答:
因为二重积分定义的几何意义就是z值为正时曲顶柱体的体积,微元相当于 投影面积,被积函数相当于高。那么如果里面的被积函数值为1,就说明这个柱体的高被视为很小的定值,它相当于一个平面薄板,这个时候二重积分算的就是这个平面薄板的面积,也相当于它的体积。
因为二重积分定义的几何意义就是z值为正时曲顶柱体的体积,微元相当于 投影面积,被积函数相当于高。那么如果里面的被积函数值为1,就说明这个柱体的高被视为很小的定值,它相当于一个平面薄板,这个时候二重积分算的就是这个平面薄板的面积,也相当于它的体积。
展开全部
高很小值不代表就可以取1,这里的1是为了避开高的存在,就像可以用三重积分求体积一样,本来三重积分是用来求质量的,但是被积函数为1的时候其实避开了密度,体积乘以密度1获得的质量的数值和体积是一样的。放在二重积分之下,就是让积域乘以高度1,获得与积域面积数值相同的体积,尽管单位不一样,可是数值上和积域面积相同。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询